Chapter 1 The Real Number System
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1.1 Introduction

201858 H15H 16:43

An Introduction to Analysis Page 2



1. 1.2 Ordered Field Axioms
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Postulate 1. [Field Axioms]

There are functions + and " defined on R? := R X R, which satisfies the following properties for
everya,b,c € R

Closure Properties.

a+ banda-bbelong to R

Associative Properties.
a+(b+c)=(@+b)+canda-(b-c)=(a-b) c

Commutative Properties.

a+b=b+aanda-b=>b-a

Distributive Law.

a-(b+c)=a-b+a-c

Existence of the Additive Identity.

There is a unique element 0 € Rsuchthat0 4+ a = aforalla € R.
Existence of the Multiplicative Identity.

There is a unique element 1 € Rsuchthat1 # 0and1-a =aforalla € R.
Existence of Additive Inverses.

For every x € R there is a unique element —x € R such that

x+(—x)=0

Existence of Multiplicative Inverses.

For every x € R / {0} there is a unique element x~! € R such that

x-(x71) =1

Postulate 2. [Order Axioms].

There is a relation < on R X R that has the following properties:
Trichotomy Property.
Given a, b € R, one and only one of the following statements holds:
a<bb<aora=>hb
Transitive Property.
Fora,b,c € R,
a<bandb <cimplya<c
The Additive Property.
Fora,b,c € R,
a<b andc € Rimplya+c<b+c.
The Multiplicative Properties.
Fora,b,c e R
a<bandc>0implyac < bc
And
a < bandc>0imply bc < ac.

By b > a weshallmeana < b.Bya < bandb = aweshallmeana <bora=b.Bya<b <cwe

shall mean a < b and b < c. In particular, 2 < x < 1 makes no sense at all.

The real number system R contains certain special subsets:
The set of natural numbers
N:={12..}
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Obtained by beginning with 1 and successively adding 1s to form 2:= 14 1.3 :=2 4+ 1, and so
on;

The set of integers
Z={.-2,-1,01,2,..}
(Zahlen is German for number);

The set of rationals (or fractions or quotients)
Q:= {%l-:m,n €Zandn # 0}

And the set of irrationals

‘=R\Q

Equality in Q is defined by
m_p . .

_—= - f l f = .
— if and only if mq = nq

Recall that each of the sets N, Z, Q, and R is a proper subset of the next; that is
NcZcQcR

1.1 Remark
We will assume that the sets of N and Z satisfy the following properties.
1. Ifn,m € Z,thenn 4+ m,n —m,and mn belong to Z.
2. fn€Z,thenn e Nifandonlyifn > 1.
3. Thereis non € Z that satisfies 0 < n < 1.
1.2 Example
If a € R, prove that
a # 0 implies a? > 0
If particular, =1 < 0 < 1.

Proof. Suppose that a # 0. By the Trichotomy Property, eithera > 0 ora < 0.
Case 1. a > 0. Multiply both sides of this inequality by a, using the First Multiplicative
Property. We obtain a® = a-a > 0 - a. Since (by (2)), 0 - a = 0 we conclude that a® > 0.
Case 2. a < 0. Multiply both sides of this inequality by a. Since a < 0, it follows from the
Second Multiplicative Property that a® = a - a > 0 - a = 0. This proves that a? > 0 when a #
0.
Since 1 # 0, it follows that 1 = 12 > 0. Adding —1 to both sides of this inequality, we
concludethat0 =1-1>0—-1=—-1.

1.3 Example

If a € R, prove that

0 <a< limpliesO < a? <aanda > 1impliesa? > a.

Proof. Suppose that 0 < a < 1. Multiply both sides of this inequality by a using the First

Multiplicative Property. We obtain 0 = 0-a < a® < 1-a = a. In particular, 0 < a? < a.
On the other hand, if a > 1, then a > 0 by Example 1.2 and the Transitive Property.
Multiplying a > 1 by a, we conclude thata’? =a-a>1-a=a

1.4 Definition.

The absolute value of a number a € R is the number

la| = {a a=0

—a a<0
1.5 Remark

The absolute value is multiplicative; that is |ab| = |a||b]| foralla,b € R

Proof. We consider four cases.

Case 1.a = 0or b = 0.Then ab = 0, so by definition, [ab| = 0 = |a]||b|.

Case 2. a > 0 and b > 0. By the First Multiplicative Property, ab > 0 - b = 0. Hence by definition,
|lab| = ab = |al|b|.
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Case3.a>0and b < 0,orb > 0anda < 0. By symmetry, we may suppose thata > 0 and b < 0.

(That is, if we can prove it for a > 0 and b < 0, then by reversing the roles of a and b, we can prove

itfora<0andb > 0.

By the Second Multiplicative Property, ab < 0. Hence by Definition 1.4,(2), and commutativity.

lab| = —(ab) = (=1)(ab) = a((=1)b) = a(=b) = |al|b|.

Case 4. a < 0 and b < 0. By the Second Multiplicative Property, ab > 0. Hence by Definition 1.4
lab| = ab = (—1)?(ab) = (—a)(=b) = |al|bl.

1.6 Theorem. [FUNDAMENTAL THEOREM OF ABSOLUTE VALUES]
Leta€ Rand M = 0.Then |a| < M if andonlyif — M <a<M

Proof. Suppose first that |a| < M. Multiplying by —1, we also have —|a| > —M.
Case 1. a = 0. By Definition 1.4, |a| = a. Thus, by hypothesis,
-M<0<a=lal<M

Case 2. a < 0. By Definition 1.4, |a| = —a. Thus by hypothesis,
—-M<—Jal=a<0<M

This proves that —M < a < M in either case.

Conversely, if —M < a < M, then a < M and —M < a. Multiplying the second inequality by —1,
we have —a < M. Consequently, |a| =a < M ifa = 0,and |a| = —a < M ifa < 0.

1.7 Theorem. The absolute value satisfies the following three properties.
1. [POSITIVE DEFINITE] For all a € R, |a| = 0 with |a| = 0 ifand only ifa = 0.
2. [SYMMETRIC] Foralla,b € R,|a —b| = |b — al.
3. [TRIANGLE INEQUALITIES] Forall a,b € R,
la + b| < |a| + |b] and ||a| — |b|| < |a — b|
Proof.
1. Ifa = 0, then |a| = a = 0.If a < 0, then by Definition 1.4 and the Second Multiplicative
Property, |a| = —a = (—1)a > 0. Thus |a| = 0 forall a € R.

If |a| = 0, then by definition a = |a| = 0 when a > 0 and a = —|a| = 0 when a < 0. Thus
|a] = 0 implies that a = 0. Conversely, |0] = 0 by definition.
2. ByRemark 1.5, |a — b| = |-1||b —a| = |b — a].

3. To prove the first inequality, notice that |x| < |x| holds for any x € R. Thus Theorem 1.6
implies —|a| < a < |a| and —|b| < b < |b|. Adding these inequalities (see Exercises 1.2.1),
we obtain
—(lal +|b]) <a+b < |a| + |b|
Hence by Theorem 1.6 Again, |a + b| < |a| + |b]|.

To prove the second inequality, apply the first inequality to (a — b) + b. We obtain
lal —|b| = |la—b + b| — |b| < |a —b| + |b| — |b| = |a — b|
By reversing the roles of a and b and applying part ii), we also obtain
|b] - lal < |b —al = |a - b|
Multiplying this last inequality by —1 and combining it with the preceding one verifies
—la—b| <la| —|b| < |a - b|
We conclude by Theorem 1.6 that ||a| - |b|| < |a—b|
Notice once and for all that this last inequality implies that |a| — |b| < |a — b| for all a,b € R.
We will use this inequality several times.
1.8 Example.
Prove that if —2 < x < 1, then |x? — x| < 6.
Proof. By hypothesis, |x| < 2. Hence by the triangle inequality and Remark 1.5,
|x2 —x| < Ix|?+ x| <4+2=6
1.9 Theorem.
Letx,y,a € R.

1. x <y+eforalle >0ifand onlyifx < y.

2. x>y —eforalle > 0ifand only if x > y.

3. |lal < eforalle > 0ifandonlya =0

Proof.
1. Suppose to the contrary that x <y + eforalle > 0 butx > y.Setey =x —y > 0 and
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observe that y + €y = x. Hence by the Trichotomy Property, y + €, cannot be greater than
x. This contradicts the hypothesis for € = ¢3. Thus x < y.

Conversely, suppose that x < y and € > 0 is given. Either x < y orx = y.If x < y, then

x + 0 <y + 0 < y+ e by the Additive and Transitive Properties. If x = y,thenx <y + €
by Additive Property. Thus x < y + € for all € > 0 in either case. This completes the proof
of part 1.

2. Suppose that x > y — € for all € > 0. By the Second Multiplicative Property, this is
equivalent to —x < —y + ¢, hence by part 1, equivalent to —x < —y. Multiplying this
inequality by —1, we conclude that x > y.

3. Suppose that |a| < € = 0 + € for all € > 0. By part 1, this is equivalent to |a| < 0. Since it is
always the case that |a| > 0, we conclude by the Trichotomy Property that |a| = 0.
Therefore, a = 0 by the Theorem 1.7i

Let a and b be real numbers. A closed interval is a set of the form

[a,b] ={x € R:a < x < b}.
[a, ) ={x € R:a < x}.
(—oo,b] :={x € Rix < b},
(—o0,0) := R.

And an open interval is a set of the form

(a,b) ={xeRia<x<b}
(a,©) ={x e Ria < x}.
(—o0,b) :={x € R:ix < b}.
(=00, ) := R.

By an interval we mean a closed interval, an open interval, or a set of the form

[a,b) ={x € Ria < x < b} Or
(a,b] ={x e Ria < x < b}

Notice, then, that when a < b, the intervals [a, b], [a, b), (a, b], and (a, b) correspond to line
segments on the real line, but when b < a, these “intervals” are all the empty set.

An interval / is said to be bounded if and only if it has the form [a, b], (a, b), [a, b), or (a, b] for some
— o0 < a < b < o, inwhich case the numbers a, b will be called the endpoints of I. All other
intervals will be called unbounded. An interval with endpoints a, b is called degenerate if a = b and
nondegenerate if a < b. Thus a degenerate open interval is the empty set, and a degenerate closed
interval is a point.

Exercises

1.2.0
Let a, b, c,d € R and consider each of the following statements. Decide which are true and which
are false. Prove the true ones and give counterexamples to the false ones.

1. fa<bandc <d <0,thenac < bd.

False.
1<2And-2<-1<0
But
-2 <4 =2
2. fa<bandc>1,then|a+c| < |b+c|.
False
-6<-5
2>1

|—6 + 2| £ |-5+ 2|
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3. fa<bandb<a+cthen|la—b|<c.

True
By the Field Axioms, there exist —b such that
b+(-b)=0

By Additive Property
a+(-b)<b+(-b)=0
Thus,

a—b<0
la—bl=b—a

Since we know that
b<a+c

b—a<c

la—b| <c

Thus, the statement is true.
4. fa<b—¢eforalle > 0,thena < 0.
True????

Not sure how to prove it
But it seems that in order to let the hypothesis to be true, a = —00, b = ©

By Multiplicative Properties
—a>(—b)+eforalle >0

1.2.1
Suppose that a,b,c € Randa < b.
1. Provethata+c<b+c.
By Additive Property (I know that it is not the precise Additive Property, but it is a fairly
straightforward Proof so ...)
a+c<b+c
2. Ifc=0,provethata-c<b-c.
We first invoke the Trichotomy Property to break the inequality down, then
By the Multiplicative Properties
When ¢ = 0, the equation is equal.
1.2.2.
Prove (7), (8), and (9). Show that each of these statements is false if the hypothesisa = 0 ora > 0 is
removed.

1.2.3 This exercise is used in Section 6.3
The positive part of an a € R is defined by

v, lalta
2
And the negative part by
__lal—a
T2

1. Provethata=a*—a and|a| =a* +a”
__|a|+a |a|—a_2a_
2 2 2

a+

_lal+a lal—a 2|a|

+ - —_
at+a > > > |a|

2. Prove that
a+_{a aZOanda__{O a=0
"0 a<o0 " l=a a<o0

It is an easy argument by simply expand the absolute value. So | skip this question.

1.2.4.
Solve each of the following inequalities for x € R
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I. [2x+1|<7
—7<2x+1<7
—-8<2x<6
—4<x<3

2. |2—x|<2
-2<(2-x)<2
—4<—x<0
0<x<4

3. %3 —=3x+1| <xB
—x3<x3-3x+1<x3
—2x3<-3x+1<0
—2x3+3x-1<0<3x—-1
It breaks down to two inequalities

1 1
—2x34+3x—1<0 =>2x3—3x+1>0=>§(—1—\/§)<x<§(x/§—1)Ux>1

1
3x—1>0 =>3x>1:x>§

4 x
. le- <1
Times both side by (x — 1)?
Since it s a non-negative number
We can use Multiplicative Properties
x(x—1) < (x — 1)?
Expand it we get
x2—x<x?-2x+1
And we apply the Additive Property
—x<-2x+1
0<—x+1
x <1
x? 1
4x2 —1 < 4
Skip for the sake of my mind

1.2.5.
Leta,b € R
1. Provethatifa>2andb=1++va—1,then2 <b < a.
a—1>1
(a—1)?%>1

0<a-—-1<a

0<va—-1<+a
1<va—-14+1<+a+1

Va-1>1
1+va—-1>2
b—a=1+Va—-1—-a

1<Vva-1<a-1
2<Va—-1+1<vV2+1

l1<a-1<a

1<va-1<+a<a

2. Provethatif2 <a<3andb=2++Va—2then0<a<h.
0O<a-2<1
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3. Provethatif0<a<landb=1-+vV1—a,then0<b < a.
4. Provethatif3<a<5andb=2++va—2,then3<b<a.

1.2.10.
Prove that (ab + cd)? < (a? + ¢2)(b? + d?)

a’b? + 2abcd + c?d?

a’b? + a?d? + c?b? + c?d?
2abcd = 2(ad)(cb)

a?d? + c*b?

(ad)? + (cb)?

(ad —ch)?> =0
(ad)? + (cb)? > 2abcd

1.2.11.
1. Let R* represent the collection of positive real numbers. Prove that R* satisfies the
following two properties.
a. Foreachx € R, one any only one of the following holds:
x€ERY,—xeRYorx=0

Because of Trichotomy Property, that

x,0 e R

One and only one of the following statements holds:
x<0, x>0, 0orx=0

b. Givenx,y € R*, both x + y and x - y belong to R*.
2. Suppose that R contains a subset R* (not necessarily the set of positive numbers) which
satisfies properties 1 and 2. Define x < y by y — x € R*. Prove that Postulate 2 holds with
< in place of <.
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1.3 Completeness Axiom
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1.10 Definition
Let £ c R be nonempty.
1. The set E is said to be bounded above if and only if there isan M € R such that a < M for
all a € E, in which case M is called an upper bound of E
2. A number s is called a supremum of the set E if and only if s is an upper bound of E and s < M
for all upper bounds M of E. (In this case we shall say that E has a finite supremum s and
write s =sup E.)
1.11 EXAMPLE.
If E =[0,1], prove that sup E = 1.
Proof.
By the definition of interval, 1 is an upper bound of E. Let M be any upper bound of E; thatis, M >
x forall x € E. Since 1 € E, it follows that M > 1. Thus 1 is the smallest upper bound of E.

1.12 Remark.
If a set has one upper bound, it has infinitely many upper bounds.
Proof. If M is an upper bound for a set E, then so is M for any M > M,,.

1.13 Remark.

If a set has a supremum, then it has only one supremum.

Proof. Let s; and s, be suprema of the same set E. Then both s; and s, are upper bounds of E,
whence by Definition 1.10ii, s; < s, and s, < s;. We conclude by the Trichotomy Property that
51 = Ss.

NOTE: This proof illustrates a general principle. When asked to prove a = b, it is often easier to
verify that a < b and b < a separately.

1.14 Theorem [Approximation Property for Supremal.

If E has a finite supremum and € > 0 is any positive number, then there is a point a € E such
that

supE —e<a<supkE

Proof.

Suppose that the theorem is false. Then there is an €, > 0 such that no element of E lies between
Sp '==sup E — €g and sup E. Since sup E is an upper bound for E, it follows that a < s, forall a €
E; thatis sy is an upper bound of E. Thus, by Definition 1.10ii, sup E < sy = sup E — €y. Adding
€o — sup E to both sides of this inequality, we conclude that €5 < 0, a contradiction.

1.15 Theorem.

If E € Z has a supremum, then sup E € E. In particular, if the supremum of a set, which contains
only integers, exists, that supremum must be an integer.

Proof.

Suppose that s := sup E and apply the Approximation Property to choose an x; € E such that
s—1<x9 <s.lfs = xp, thens € E. Otherwise, s — 1 < x5 < s and we can apply the
Approximation Property again to choose x; € E such that x, < x; < s.

Subtract x, from this last inequation to obtain 0 < x; — xg < s — x. Since —x, < 1 — 5, it
follows that 0 < x; —xy < s+ (1 —s) = 1. Thus x; — x, € Z n (0,1), a contradiction by Remark
1.1iii. We conclude that s € E.

Postulate 3. [Completeness Axiom].
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If E is a nonempty subset of R that is bounded above, then E has a finite supremum.

1.16 Theorem [Archimedean Principle]
Given real numbers a and b, with a > 0, there is an integer n € N such that b < na.

Strategy: The idea behind the proof is simple. By the completeness Axiom and Theorem 1.15,
any nonempty subset of integers that is bounded above has a "largest” integer. If k, is the
largest integer that satisfies kqa < b, thenn = (ko + 1) (which is larger than k) must satisfy
na > b. In order to justify this application of the Completeness Axiom, we have two details to
attend to: (1) Isthe set E := {k € N: ka < b} bounded above? (2) Is E nonempty? The answer to
the second question depends on whether b < a or not. Here are the details.

Proof.
Ifb < a,setn = 1.Ifa < b, consider the set E = {k € N: ka < b}. E is nonempty since 1 € E. Let

k € E (i.e,, ka < b).Since a > 0, it follows from the First Multiplicative Property that k < g. This

proves that E is bounded above by s. Thus by the Completeness Axiom and Theorem 1.15, E has

a finite supremum s that belongs to E, in particular, s € N.
Setn = s+ 1. Thenn € N and (since n is larger than s), n cannot belong to E. Thus na > b.

1.17 EXAMPLE
LetA4 = {1,%,%,%, } and B = {%,%,%, } Prove thatsup A = sup B = 1.
Proof.

Itis clear that 1 is an upper bound of both sets. It remains to see that 1 is the smallest upper
bound of both sets. For 4, this is trivial. Indeed, if M is any upper bound of 4, then M > 1 (since
1 € A). On the other hand, if M is an upper bound for B,but M < 1,then1 —M > 0.In

particular, 1 € R
1-M .
Choose, by the Archimedean Principle, an n € N such thatn > 1t follows (do the algebra)

thatxy :==1— % > M. Since x; € B, this contradicts the assumption that M is an upper bound of
B (see Figure 1.3)

1.18 Theorem [Density of Rationals].
Ifa, b € Rsatisfy a < b, then thereisaqg € Q suchthata < g < b.

Strategy: To find a fraction g = % such that a < g < b, we must specify both numerator m and

denominator n. Let's suppose first that a > 0 and that the set E' == {k € N: S < a} has a

supremum, ky. Then m := k, + 1, being greater than the supremum of E, cannot belong to E.
Thus % > a. s this the fraction we look for? Is %1 < b? Not unless n is large enough. To see this,

look at a concrete example: a = %and b = 1.1fn = 1, then E has no supremum. Whenn = 2,

ko = 1 and whenn = 3,ky = 2. In both cases k—":—l = 1is too big. However, whenn = 4, ky = 2
ko+1 _ 3

so——=1 is smaller than b, as required.

How can we prove that for each fixed a < b there always is an n larger enough so that if k; is
ko+1 . k . .
chosen as above, then 0—: < b? By the choice of k), 70 < a. Let's look at the worst case scenario:

a= % Then b > k°—n+1— means
ko+1 ky 1 1
S Y p =
n non n
(ie., b—a > ;). Such an n can always be chosen by the Archimedean Principle.

b >

What about the assumption that sup E exists? This requires that E be nonempty and bounded
above. Once n is fixed, E will be bounded abouve by na. But the only way that E is nonempty is that

. 1 . . - .
at the very least, 1 € E (i.e, that S a). This requires a second restriction on n. We begin our
formal proof at this point.

Proof.
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Suppose first that a > 0. Since b — a > 0, use the Archimedean Principle to choose an n € N that
satisfies
n > maxy—,—¢,
ab—-a
And observe that both% <a and% <b-a.

Consider the set E = {k € N:% < a}. Since 1 € E, E is nonempty. Since n > 0, E is bounded

above by na. Hence, by Theorem 1.15, k := sup E exists and belong to E, in particular, to N. Set
m=ky+1landqg= 7—: Since kg is the supremum of E, m € E. Thus g > a. On the other hand,

since kg, € E, it follows from the choice of n that

b=at -2 p-a> I
=a a)=— a S

Now suppose that a < 0. Choose, by the Archimedean Principle, an integer k € N such that k >
—a.Then 0 < k + a < k + b, and by the case already proved, there is an r € Q such that k +
a <r <k + b. Therefore, q .= r — k belongs to Q and satisfies the inequality a < g < b.

1.19 Definition.
Let E c R be nonempty.
1. The set E is said to be bounded below if and only if there is an m € R such that a > m for
all a € E, in which case m is called a lower boudn of the set E.
2. Anumber t is called an infimum of the set E if and only if t is a lower bound of E and t >
m for all lower bounds m of E. In this case we shall say that E has an infumum t and write
t =infE.
3. E issaid to be bounded if and only if it is bounded both above and below.

1.20 Theorem. [Reflection Principle].
Let E € R be nonempty.
1. E hasasupremum if and only if —F has an infimum, in which case
inf(—E) = —sup E.
2. E has an infimum if and only if —F has a supremum, in which case
sup(—E) = —infE.

Proof.
The proofs of these statements are similar. We prove only the first statement.
Suppose that E has a supremum s and set t = —s. Since s is an upper bound for E, s > a for all

a € E,so —s < —a forall a € E. Therefore, t is alower bound of —E. Suppose that m is any
lower bound of —E. Then m < —a for all a € E, so —m is an upper bound of E. Since s is the
supremum of E, it follows that s < —m (i.e.,, t = —s = m). Thus t is the infimum of —E and

sup E = s = —t = —inf(—E).

Conversely, suppose that —FE has an infimum t. By definition, t < —a for all a € E. Thus —t is an
upper bound for E. Since E is nonempty, E has a supremum by the Completeness Axiom.

1.21 Theorem [Monotone Property].

Suppose that A € B are nonempty subsets of R.
1. If B has a supremum, then sup A < sup B.
2. If B has an infimum, then inf A > inf B.

Proof.

1. Since A € B, and upper bound of B is an upper bound of A. Therefore, sup B is an upper
bound of A. It follows from the Completeness Axiom that sup A exists, and from Definition
1.10ii that sup A < sup B.

2. Clearly, —A € —B. Thus by part i), Theorem 1.20, and the Second Multiplicative Property,
inf A = —sup(—A) = —sup(—B) = inf B.

It is convenient to extend the definition of suprema and infima to all subsets of R. To do this we

expand the definition of R as follows. The set of extended real numbers is defined to be R :=
R U {+00}. Thus x is an extended real number if and only if either x € R, x = +00, or x = —o0.
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Let E € R be nonempty. We shall define sup F = +o0 if E is unbounded above and inf E = —oo if
E is unbounded below. Finally, we define sup @ = —oo and inf @ = +o0. Notice, then, that the
supremum of a subset E of R (respectively, the infimum of E) is finite if and only if E is
nonempty and bounded above (respectively, nonempty and bounded below).

Exercise

1.30 Decide which of the following statements are true and which are false. Prove the true ones

and give counterexamples to the false ones.
1. If A and B are nonempty, bounded subsets of R, then sup(4 N B) < sup A.

Since
1. Let € be a positive real number. If A is a nonempty, bounded subset of R and B =
{ex: x € A}, then sup(B) = € sup(4).
2. If A+ B:={a+ b:a € Aand b € B}, where A and B are nonempty, bounded subsets of R,
then sup(4 + B) = sup(4) + sup(B).
3. fA—B:={a—b:a € Aand b € B}, where A and B are nonempty, bounded subsets of R,
then sup(A — B) = sup(4) — sup(B).
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1.4 Mathematical Induction

20185913 424

1.22 Theorem. [Well-Ordering Principle].

If E is a nonempty subset of N, then E has a least element (i.e., E has a finite infimum and inf E €
E).

Proof.

Suppose that E € N is nonempty. Then —E is bounded above, by —1, so by the Completeness
Axiom sup(—E) exists, and by Theorem 1.15, sup(—F) € —E. Hence by Theorem 1.20, inf E =
— sup(—F) exists, and infE € —(—E) = E.

1.23 Theorem.
Suppose for each n € N that A(n) is a proposition (i.e., a verbal statement or formula) which
satisfies the following two properties:

1. A(1)is true.

2. Foreveryn € N for which A(n) is true, A(n + 1) is also true.
Then A(n) is true for alln € N.
Proof.
Suppose that the theorem is false. Then the set E = {n € N: A(n) is false} is nonempty. Hence by
the Well-Ordering Principle, E has a least element, say x.
Since x € E € N c Z, we have by Remark 1.1ii that x > 1. Since x € E, we have by hypothesis 1
that x # 1. In particular, x — 1 > 0. Hence, by Remark 1.1liand iii, x —1 > 1andx — 1 € N.
Since x — 1 < x and x is a least element of E, the statement A(x — 1) must be true. Applying
hypothesis ii) to n = x — 1, we see that A(x) = A(n + 1) must also be true; thatis, x € E, a
contradiction.

1.24 EXAMPLE.
Prove that

n
Z(Bk —1)Bk+2)=3n3+6n%+n
k=1

Fz)r n € N.
Proof.

Let A(n) represent the statement
n

(Bk—1)(3k +2) =3n3 + 6n? +n.
k=1
For n = 1 the left side of this equation is 2 - 5 and the right side is 3 + 6 + 1. Therefore, A(1) is

true. Suppose that A(n) is true for some n > 1. Then
n+1 n

Z(3k —1DBk+2) = @n+2)Bn+5) + 2(31(, — 13k +2)
k=1 k=1
=0Bn+2)Bn+5+3nd+6n%>+n

=3n3+15n? 4+ 22n+ 10
On the other hand, a direct calculation reveals that

3n+1D3+6(m+1)2+(n+1) =3n3+15n*+22n+ 10
Therefore, A(n + 1) is true when A(n) is. We conclude by induction that A(n) holds for alln €
N.

1.25 Lemma.
Ifn,k e Nand 1 < k < n, then

(n:1>=<kf1)+<2)'

Proof.
By definition,
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n ny nlk nl(n—k+1)
(k—1>+(k>_(n—k+1)!k!+(n—k+1)!k!

_ nl(n+1) _(n+1
‘(n——ﬁm—k!—< K )

1.26 Theorem. [Binomial Formula].
Ifa,b € R,n € N, and 0° is interpreted to be 1, then

n

o=y (e

k=0
Proof.
The proof is by induction on n. The formula is obvious for n = 1. Suppose that the formula is true for
some n € N. Then by the inductive hypothesis and Postulate 1,

(a+b)**! = (a+b)(a+b)"

n

(a+b) Z (Z) a™kpk

k=0

n
E(n)an—k+lbk i Z qn-kpk+1
k=0 k

k=0

-1

n
=| gt + Z( ) n—k+lpk | 4 bn+1+2( )an—kbk+1
= k

n

RS ((:) N (k " 1)) KLk 4yt
k=1

Hence it follows from Lemma 1.25 that

n+1
(a + b)n+1 =q"t! 4+ Z (n + 1) ahtl-kpk 4 pnt+l — z (n -;c_ 1) an+1—kbk;

k=0
That is, the formula is true for n + 1. We conclude by induction that the formula holds for all n € N.

1.27 Remark.
Ifx >1and x € N, then thereisann € Nsuchthatn < x <n + 1.

Proof.

By the Archimedean Principle, the set E = {m € N: x < m} is nonempty. Hence by the Well-
Ordering Principle, E has a least element, say m,.

Setn = my — 1.Sincemgy € E,n+ 1 = my > x. Since my isleast, n = my — 1 < x.Sincex € N,
we also have n # x. Therefore,n < x <n+ 1.

1.28 Remark.

If n € N is not a perfect square (i.e., if there is no m € N such that n = m?), then v/ is irrational.
Proof.

Suppose to the contrary that n € N is not a perfect square but/n € Q; thatis, vn = g for some

P, q € N. Choose by Remark 1.27 an integer m, € N such that

my < m<mgy+ 1.

Consider the set E := {k €EN:kyn € Z}. Since g+/n = p, we know that E is nonempty. Thus by the
Well-Ordering Principle, E has a least element, say n,.

Set x = ny(vVn —my). By (10), 0 < v/ — my < 1. Multiplying this inequality by ny, we find that
0 <x <ny.

Since ny is a least element of E, it follows from (11) that x € E. On the other hand,

xyn = ng(vVn — my)yn = ngn — mengyn € Z

Since ny € E. Moreover, since x > 0 and x = nyy/n — ngmy is the difference of two integers, x €
N. Thus x € E, a contradiction.
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1.5 Inverse Functions and Images

20185F9H13H 19:22

Let X and Y besetsand f: X - Y.
1. fissaid tobe 1-1 (one to one or an injection) if and only if
Xq,%, € X and f(xl) = f(xz) imply x; = x,.

2. fissaid to be onto (or a surjection) if and only if for each y € Y there isa x € X such that
y = f(0).

3. f iscalled a bijection if and only if it is both 1-1 and onto.
Sometimes, to emphasize the domain and range of f, we shall say that a bijection f: X - Y
is 1-1 from X onto Y.

1.30 Theorem.

Let X and Y be sets and f: X — Y. Then the following three statements are equivalent.
1. f hasan inverse;
2. fis1-1from X ontoY;
3. There is a function g: Y — X such that

g(f(x)) = x forallx € X | (13)
And

f (g(y)) =yforallye |(14)
Y.

Moreover, for each f: X — Y, there is only one function g that satisfies (13) and (14). Itis
the inverse function f~1.

Proof.
1. implies 2. By definition, if f has an inverse, then Ran(f) =Y (so f takes X onto Y) and
each y € Y has a unique preimage in X [so, iff(yl) = f(y,),theny, = y,,ie, fis1-1on
X].
2.implies 3. The proof that 1. implies 2. also shows that if f: X — Y is 1-1 and onto, then f
has an inverse. In particular, g(y) = f~1(y) satisfies (13) and (14) by (12)
3.implies 1. Suppose that there is a function g: Y = X which satisfies (13) and (14). If
some y € Y has two preimages, say x; # x, in X, then f(x;) = y = f(x,). It follows from

(13) thatx; = g (f(xl)) =g (f(xz)) = Xx,, a contradiction. On the other hand, given y €

Y,setx = g(y). Then f(x) = f (g(y)) = y by (14), so Ran(f) =Y.

Finally, suppose that h is another function which satisfies (13) and (14), and fix y € Y. By

2., there is an x € X such that f(x) = y. Hence by (13)

h(y) =h(f(x) =x=g(f(x) = 9(»);

Thatis h = g on Y. It follows that the function g is unique.
1.31 Remark.
Let I be an interval and let f: I — R. If the derivative of f is either always positive on I, or
always negative on /, then f is 1-1 on .
Proof.
By symmetry, we may suppose that the derivative f’ of f satisfies f'(x) > 0 for all x € I. We will
use a result that almost everyone who has studied one variable calculus remembers (for a proof,
see Theorem 4.17): If f' > 0 on an interval I, then f is strictly increasing on [; that is, x;, x, € [
and x; < x, imply that f(xl) < f(x3).
To see why this implies that f is 1-1, suppose that f(xl) = f(x,) for some x4, x, in X. lf x; # x,,
then it follows from the trichotomy property that either x; < x, or x, < x;. Since f is strictly
increasing on I, either f(xl) < f(xz) or f(xz) < f(x1). Both of these conclusions contradict the
assumption that f(xl) = f(x3).
By Theorem 1.30, f: X — Y has an inverse function f~! if and only iff‘l(f(x)) =x forallx € X

and f (f_l(y)) = y for all y € Y. This suggests that we can find a formula for f "1 if y = f(x)
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can be solved for x.

1.32 Example.
Prove that f(x) = e* — e~ is 1-1 on R and find a formula for f~1 on Ran(f).

Solution.
Since f'(x) =e*+ e * >0forallx € R, fis 1-1 on R by Remark 1.31.
Let y = e* — e™*. Multiplying this equation by e* and collecting all non-zero terms on one side
of the equation, we have
e?* —ye* —1=0,
A quadratic in e*. By the quadratic formula,
(y£Vr7+4)
2

X

Since e” is always positive, the minus sign must be discarded. Taking the logarithm of this last
identity, we obtain x = log (y + \/;/2 + 4) —log 2. Therefore,

flx) = log(x +\/x7ﬁ) —log2.

1.33 Definition

Let X and Y be sets and f: X — Y. The image of aset E € X under f is the set
f(E):={y € Y:y = f(x) for some x € E}

The inverse image of a set E C Y under f is the set

fUE) ={x € X: f(x) = y forsome y € E}

1.34 Example

Find the images and inverse images of the sets I = (—1,0) and J = (0,1] under the function
flx) =x%+x.

Solution:

Since "find" doesn't mean "prove", we look at the graph y = x2 + x. By definition, f(I) consists
of the y-values of f(x) as x ranges over I = (-1, 0).

Since f has roots at x = 0, —1 and has minimum of —0.25 at x = —0.5, it is clear by looking at
the graph that f(I) = [—0.25,0). Since f~1(I) consist of the x-values whose images belong to

I = (—1,0), and the graph of f lies below the x-axis only when —1 < x < 0, it is also clear that
=) = (—1,0). Similarly, f(J) = (0,2] and

_1-+F _
70 = [(—12—2' 1) v (0'—1;—@

1.35 Definition.
LetE = {E“}aeA be a collection of sets

1. The union of the collection £ is the set

U E, == {x:x € E, for some a € A}.
a€A

2. The intersection of the collection € is the set
N E, = {x:x €E, foralla EA}.

a€A
1.36 Theorem. [Demorgan's Laws].

Let X be a set and {E“}aeA be a collection of subsets of X. If for each E S X the symbol E¢
represents the set X \ E, then

c
— c
(Be) =258 @7

And
C
— C
(24e) =, 5 a9

Proof. Suppose that x belongs to the left side of (17); thatis, x € X and x & U,y E,- By
definition, x € X and x € E, for all « € A. Hence, x € E{ for all @ € A; that is, x belongs to the
right side of (17). These steps are reversible. This verifies (17). A similar argument verifies
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(18).

1.37 Theorem. Let X and Y be setsand f: X - Y.
1. If {E“}aeA is a collection of subsets X, then

f (aLEJA E“) - (xLEJA f(E“) and  f (aQA E“) < aQA f(EO‘)'
2. If B and C are subsets of X, then f(C \ B) 2 f(C) \ f(B)
3. If {E“}aeA is a collection of subsets of Y, then

£ (90Be) = 2, ) a7 (0, ) =0, 1 (E)

4. If B and C are subsets of Y, then f~1(C \ B) = f~1(C) \ f~1(B).
5. IfE c f(X), then f(f~X(E)) = E, butif E € X, then f~1(f(E)) 2 E.

Proof.

1. By definition, y € f(UaeA Ea) ifand only if y = f(x) for some x € E, and a € A. This is
equivalent to y €Ugeqy f(Ea). Similarly, y € f(naeA Ea) ifand only if y = f(x) for some
X €Ngega E4- This implies that for all @ € A there isan x, € E, such thaty = f(xa).
Therefore, y €ENgeqy f(Ea).

Ify € f(C)\ f(B),theny = f(c) for some ¢ € C buty # f(b) for any b € B. It follows that
y E f(C \ B). Simialr arguments prove parts 3., 4., and 5.,

2.

It is important to recognize that the set inequalities in parts i), ii), and v) can be strict unless f is
1-1 (see Exercise 1.5.6 and 1.5.7). For example, if f(x) = x2, E; = {1}, and E, = {—1}, then
f(E; N E,) = @ is aproper subset of f(E;) N f(E,) = {1}.
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1.6 Countable and Uncountable Sets

2018%F10811H 13:55

1.38 Definition
Let E be a set.
1. E is said to be finite if and only if either E = @ or there exists a 1-1 function which takes
{1,2,...,n} onto E, for some n € N.
2. E is said to be countable if and only if there exists a 1-1 function which takes N onto E.
3. E is said to be at most countable if and only if E is either finite or countable.
4. E is said to be uncountable if and only if E is neither finite nor countable.
1.39 Remark [Cantor's Diagonalization Argument].
The open interval (0, 1) is uncountable.

Strategy: Suppose to the contrary that (0, 1) is countable. Then by definition, there is a function
f on N such that £ (1), f(2), ... exhausts the elements of (0, 1). We could reach a contradiction if
we could find a new number x € (0, 1) that is different from all the f(k)'s. How can we
determine whether two numbers are different? One easy way is to look at their decimal
expansions. For example, 0.1234 # 0.1254 because they have different decimal expansions.
Thus, we could find an x that has no preimage under f by making the decimal expansion of x
different by at least one digit from the decimal expansion of EVERY f (k).

There is a flaw in this approach that we must fix. Decimal expansions are unique except for
finite decimals, which always have an alternative expansion that terminates in 9s (e.g., 0.5 =
0.49999... and 0.24 = 0.2399999 ...) (see Exercise 2.2.10). Hence, when specifying the decimal
expansion of x, we must avoid decimals that terminate in 9s.

Proof. Suppose that there is a 1-1 function f that takes N onto the interval (0, 1). Write the
numbers f(j),j € N, in decimal notation, using the finite expansion when possible, that is,
f(l) = 0.0!11(112 ey
f(Z) = 0.0!21a22 ey
f(3) = 0.“31“32 ey

ey

Where «;; represents the j* digit in the decimal expansion of £ (i) and none of these expansions

terminates in 9s. Let x be the number whose decimal expansion is given by 0. 51, ..., where
'B ._ {(ka +1 ifakk <5
k= akk—l ifakk>5

Clearly, x is a number in (0, 1) whose decimal expansion does not contain one 9, much less
terminate in 9s. Since f is onto, there is a j € N such that f(j) = x. Since we have avoided 9s, the
decimal expansions of f(j) and x must be identical (e.g, a;; = B; = a;; £ 1). It follows that 0 =
+ 1, a contradiction.

It is natural to ask about the countability of the sets Z, Q, and R. To answer these questions, we
prove several preliminary results. First, to show that a set E is at most countable, we do not
need to construct a ONE-TO-ONE function which takes N onto E.

1.40 Lemma.
A nonempty set E is at most countable if and only if there is a function g from N onto E.

Proof.
If E is countable, then by Definition 1.38ii there is a (1-1) function f from N onto E, so g := f
takes N onto E. If E is finite, then there is an n € N and 1-1 function f that takes {1, 2, ..., n} onto
E. Hence

. fU) j<n
9(j) = { 1)

fA) j>n
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Takes N onto E.

Conversely, suppose that g takes N onto E. We need to construct a function f thatis 1-1 from
some subset of N onto E. We will do this by eliminating the duplication in g. To this end, let k; =
1.Ifthe set E; == {k € N: g(k) # g(kl)} is empty, then E = {g(k,)}, thus evidently at most
countable. Otherwise, let k, be the least element in E; and notice that k, > k;.

SetE, = {k €N:g(k) EE\ {g(kl),g(kz)}}. If E, is empty, then E = {g(kl),g(kz)} is finite,
hence at most countable. Otherwise, let k5 be the least element in E,. Since g(k3) €

E\ {g (kl),g(kz)}, we have g(k3) # g(k;) and g(k3) # g(kl). Since g is a function, the first
condition implies k3 # k. Since k is least in E;, the second condition implies k, < k3. Hence,
kq <k, <ks.

Continue this process. If it ever terminates, then some

Ej = {k eN:g(k) € E\ {g(ky), . g (k})}}
[s empty, so E is finite, hence at most countable. If this process never terminates, then we
generate integers k; < k, < --- such that k;, is the least element of E; for j = 1,2, ....

Set f(j) =g (kj) ,J € N. To show that f is 1-1, notice that j # ¢ implies that k; # k,, say k; <
k,. Then k; < k,_4, so by construction

9(ke) € E\{g(kr), . 9 (k) s g(ke—1)} € EN {g (ko). - g (Ky)}-

In particular, g(k,) # g (kj); thatis, f(¢) # f(j).
To show that f is onto, let x € E. Since g is onto, choose ¢ € N such that g(¥) = x. Since by
construction j < kj, use the Archimedean Principle to choose a j € N such that k; > £. Since

k; is the least element in E;_4, it follows that g(£) cannot belong to E'\ {g(kl), e g (k~_1)};

J
thatis, g(¢) = g(ky,) for somen € [1,j — 1]. In particular, f(n) = g(k,) = x.
Next, we show how set containment affects countability and use it to answer the question about
countability of R.

1.41 Theorem.
Suppose that A and B are sets.
1. If A € B and B is at most countable, then A is at most countable.
2. If A € B and A is uncountable, then B is uncountable.
3. Risuncountable.
Proof.
1. Since B is at most countable, choose by Lemma 1.40 a function g which takes N onto B.
We may suppose that A is nonempty, hence fix an a, € A. Then
) = {g () gm)ea
Qo gn) ¢ A
Takes N onto A. Hence by Lemma 1.40, A is at most countable.
2. If B were at most countable, then by part 1., A would also be at most countable, a
contradiction.
3. By Remark 1.39, the interval (0, 1) is an uncountable subset of R. Thus, by part 2, R is
uncountable.
1.42 Theorem.
Let A1, A,, ... be at most countable sets.

1. Then A; X A, is at most countable.
2. If

E =jL=J1 Aj :=jgN Aj = {x :x €Aj forsomeje€ N},

Then E is at most countable.

Proof.
1. By Lemma 1.40, there exist functions ¢ (respectively, 1)) which take N onto A,
(respectively, onto 4,). Hence f(n,m) = ((I)(n),l/)(m)) takes N X N onto A; X 4,.Ifwe
can construct a function g which takes N onto N X N, then by Exercise 1.6.5a, f o g takes N
onto A; X A,. Hence by Lemma 1.40, A; X A, is at most countable.
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To construct the function g, plot the points of N X N in the plane. Notice that we can
connect these lattice points with a series of parallel backward-slanted lines; for example,
the first line passes through (1, 1), the second line passes through (1, 2) and (2, 1), and the
third line passes through (1, 3), (2, 2), and (3, 1). This suggests a method for constructing
g-Setg(1) =(1,1),9(2) =(1,2),g(3) =(2,1),9(4) =3, 1), ..
If you wish to see an explicit formula for g, observe that the nth line passes through the
set of lattice points

(1,n),2,n-1),3,n—-2),..,(n—1,2),(n,1);
That is, through the set of lattice points (k j) which satisfy k + j = n + 1. Since the sum of

integers 14+ 2 + -+ (n — 1) is given by — (see Exercise 1.4.4a), there are (—zﬁ

elements in the first n — 1 slanted lines. Hence a function which takes N onto the nth
slanted line is given by

g(j) ={,n+1-9),
Wherej =€ +— (- l)n
the Archimedean Pr1nc1p1e and the Well-Ordering Principle to choose n least such that j <
n(ntl), ; that is, such that j = ¢ + 8D ok some £ € [1,n]. Thus g takes N onto N X N.

2. By Lemma 1.40, choose functions f] that take N onto 4y, j € N. Clearly, the function
h(k,j) = fi (]) takes N X N onto E. Hence the function h o g, where g is defined by (19),
takes N onto E. We conclude by Lemma 1.40 that E is at most countable.

1.43 Remark.

The sets Z and Q are countable, but the set of irrationals is uncountable.
Proof.

Z=NU(—N)u{0}and Q =U;_, { :p € Z} are both countable by Theorem 1.42ii.

If R\ Q were countable, then R = (]R{ \ Q) U Q would also be countable, a contradiction of
Theorem 1.41iii.

. This function is defined on all of N because given j € N, we can use
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Chapter 2 Sequences in R
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2.1 Limits of Sequences
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2.1 Definition
A sequence of real numbers {xn} is said to converge to a real number a € R if and only if for every
€ > 0 thereisan N € N (which in general depends on €) such that

n>N implies |xn - a| <e

2.2 Example

1
1. Prove that; - 0asn — oo,

2xp+1 5
-—>Easn—> 9

2. Ifx, — 2, prove that

Proof.
1. Lete > 0. Use the Archimedean Principle to choose N € N such that N > % By taking the

Xn

. o . oo 11 L1 P
reciprocal of this inequality, we see that n > N implies —=y<e Since —are all positive, it

follows that |%| < eforalln = N.

Strategy for 2:
By definition, we must show that
2x,+1 5 2-—x,

Xn 2 2xy,
[s small for large n. The numerator of this last fraction will be small for large n since
Xp = 2,as n = oo. What about the denominator? Since x,, = 2, x,, will be greater
than 1 for large n, so 2x,, will be greater than 2 for large n. Since we made n large
twice, we will make two restrictions to determine the N that corresponds to € in
Definition 2.1. Let's try to write all this down carefully to be sure that it works out.
2. Lete > 0. Since x,, — 2, apply Definition 2.1 to this € > 0 to choose N; € N such thatn >
N; implies |xn - 2| < €. Next, apply Definition 2.1 with € = 1 to choose N, such thatn >
N, implies |xn - 2| < 1. By the Fundamental Theorem of Absolute Values, we haven > N,
implies x,, > 1 (i.e., 2x, > 2).
SetN = max{Nl,Nz} and suppose that n = N. Since n > N;, we have |2 - xn| = |xn - 2| <
€.Sincen > N, we have 0 < i < % < 1. It follows that

2x, +1 5 2—
2o+l 5| _([2-x) e
Xp, 2 2xp 2xp
Foralln = N.
2.3 Example.

The sequence {(—1)"},,en has no limit.
Proof. Suppose that (—1)" - a asn — o for some a € R. Given € = 1, thereisan N € N
such thatn > N implies |(—1)™ — a| < €. For n odd this implies |1+ a| = |-1—a| < 1,
and for n even this implies |1 — a| < 1. Hence
2=]1+1|<|1—-a|l+[1+al<1+1=2
That is, 2 < 2, a contradiction.
2.4 Remark.
A sequence can have at most one limit.
Proof.
Suppose that {xn} converges to both a and b. By definition, given € > 0, there is an integer N
such thatn > N implies |xn - a| < gand |xn - b| < E Thus it follows from the triangle
inequality that
la —b| < |a—xn|+|xn—b| <e
That is, |a — b| < € for all ¢ > 0. We conclude, by Theorem 1.9, that a = b.

2.5 Definition

By a subsequence of a sequence {xn}neN, we shall mean a sequence of the form {xnk} , Where
keN
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eachn, € Nandn; <n, <.

2.6 Remark
If {xn}neN converges to a and {xnk}kEN is any subsequence of {xn}neN, then x,, converges to a

ask — oo.
Proof.
Let € > 0 and choose N € N such thatn > N implies |xn — a| < e.Sincen, ENandny; <n, <

-+, it is easy to see by induction that n;, > k for all k € N. Hence, k = N implies |xnk - a| <€

thatis, x,, > aask — oo.

2.7 Definition
Let {xn} be a sequence of real numbers.
1. The sequence {x,} is said to be bounded above if and only if the set {x,: n € N} is bounded
above.
2. The sequence {xn} is said to be bounded below if and only if the set {xn: ne N} is bounded
below.
3. {xn} is said to be bounded if and only if it is bounded both above and below.

Combining Definitions 2.7 and 1.10, we see that {xn} is bounded above (respectively, below) if
and only if there isan M € R such that x,, < M for all n € N (respectively, if and only if there is
an m € R such that x,, = m for all n € R). It is easy to check (see Exercise 2.1.4) that {xn} is
bounded if and only if there is a € > 0 such that |xn| < C for all n € N. In this case we shal say
that {xn} is bounded, or dominated, by C.

2.8 Theorem.
Every convergent sequence is bounded.
Strategy: The idea behind the proof is simple (see Figure 2.1). Suppose that x,, - a asn — oo. By
definition, for large N the sequence xy, Xy 4, ... must be close to a, hence bounded. Since the
finite sequence x4, ..., Xy _4 is also bounded, it should follow that the whole sequence is
bounded. We now make this precise.
Proof.
Given € = 1, thereisan N € N such thatn > N implies |x, — a| < 1. Hence by the triangle
inequality, |xn| < 1+ |a|foralln = N.On the other hand, if 1 < n < N, then

|xn| <M= max{|x1 , |x2|, e |xN|}.
Therefore, {xn} is dominated by max{M, 1 + |a|}.
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2.2 Limit Theorems
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2.9 Theorem [Squeeze Theorem].
Suppose that {xn}, {yn} and {Wn} are real sequences.
1. ifx, - aandy, = a (the SAME a) as n = o, and if there is an N, € N such that
Xn <wWp <y, forn=N,,
Thenw,, = aasn — oo,
2. Ifx, > 0asn - o and {yn} is bounded, then x,,y,, = 0 asn — oo.

Proof.

1. Lete > 0. Since x,, and y,, converge to a, use Definition 2.1 and Theorem 1.6 to choose
Ny, N, € N such thatn = N; implies —e < x, —a < eandn = N, implies —e < y, —a < €.
SetN = max{NO, Ny, Nz}- If n = N, we have by hypothesis and the choise of N; and N, that

a—e<xpSW, Sy, <a+e;
That is, |Wn — a| < € forn = N. We conclude that w,, = aasn — oo,
2. Suppose that x,, = 0 and that there is an M > 0 such that |yn| <MforneN.Lete >0

and choose an N € N such thatn > N implies |xn| < i Thenn = N implies
€
<M-—-=
eyl <M=

We conclude that x,,y,, = 0 asn — co.

2.10 Example.

Find lim,,_,, 27" cos(n® —n? + n — 13).

Solution.

The factor cos(n3 -n?+n-— 13) looks intimidating, but it is superfluous for finding the limit of this
sequence. Indeed, since |cos x| < 1 for all x € R, the sequence {2‘" cos(n3 —n?+n-— 13)} is
dominated by 27™. Since 2™ > n, it is clear by Example 2.2i and the Squeeze Theorem that both
27" > 0and 2" cos(n® —n?+n—13) > 0asn - o,

2.11 Theorem.

Let E c R.If E has a finite supremum (respectively, a finite infimum), then there is a sequence
X, € E such that x,, - sup E (respectively, a sequence y,, € E such thaty,, = infE) asn — oo.
Proof.

Suppose that E has a finite supremum. For each n € N, choose (by the Approximation Property

for Suprema) an x;, € E such thatsup E — % < x, < sup E. Then by the Squeeze Theorem and
Example 2.2i, x, = sup E as n — oo. Similarly, there is a sequence y, € E such thaty, — infE.

2.12 Theorem.
Suppose that {xn} and {yn} are real sequences and that a € R. If {xn} and {yn} are convergent,
then

1. lim (%, +y,) = lim x,, + lim y,
n—-oo n—-oo n—-oo

2. lim (axn) = arlli_r)‘glO Xn,

n—oo
And

3. lim (xnyn) = <lim xn) (lim yn).
n—oo n—oo n—oo

If, in addition, y,, # 0 and lim,_, y,, # 0, then
o _ (i)

n% Yn (lim yn>

n—oo

(In particular, all these limits exist.)
Proof.
Suppose that x, = x and y, = yasn — oo.
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1. Lete > 0and choose N € N such thatn > N implies |x, — x| < %and lym — ¥| < % Thus
n = N implies
€ €
|Gen + yn) = (x +¥)| < |xn — x| + |y — ¥ <5+3
2. It suffices to show that ax,, — ax - 0 asn — o. But x,, — x = 0 asn — oo, hence by the
Squeeze Theorem, a(xn — x) — 0asn — oo,
3. By Theorem 2.8, the sequence {xn} is bounded. Hence by the Squeeze Theorem the
sequence {xn (yn - y)} and {(xn - x)y} both converge to 0. Since
XnYn — Xy = xn(yn - y) + (xn - x)y,
It follows from part 1) that x,,y;,, = xy as n — oo. A similar argument establishes part 4)
(see Exercise 2.2.4)

= €.

2.13 Example.

. . n3+n?-1
Find llmn_)oo _1—_3’112_ .
Solution.

Multiplying the numerator and denominator by %, we find that

e (1))

1-3n3 1
ﬁ—3

k
By Example 2.2i and Theorem 2.12iii, % = (l) — 0,asn — oo, for any k € N. Thus by Theorem

n
2.12i, ii, and iv,
i n®+n*-1 1+0-0 1
now 1-3n3  0-3 3

2.14 Definition.
Let {xn} be a sequence of real numbers.
1. {xn} is said to diverge to +oo (notation: x,, = +o0 asn - o or lim,,_,, x, = +o0) if and
only if for each M € R there isan N € N such that
n = N implies x,, > M.
2. {xn} is said to diverge to —oo (notation: x,, - —ooasn — oo or lim,_,, X, = —o0) if and
only if for each M € R thereisan N € N such that
n = N implies x,, < M.

2.15 Theorem.
Suppose that {x,} and {y, } are real sequences such that x,, - +oo (respectively, x,, > —) as
n — oo,
1. Ify, is bounded below (respectively, y,, is bounded above), then
lim (xn + yn) =+ (respectively, lim (xn + yn) = —oo).
n—-oo

n—-oo

2. Ifa > 0, then

lim (axn) = +o00 (respectively, Ai_r)rc}o(axn) = —00).

n—oo

3. Ify, > M, for some My > 0 and alln € N, then
lim (xnyn) = +o00 (respectively, lim (xnyn) = —00).
n—-oo n—->0oo

4. If {yn} is bounded and x, # 0, then
lim In _ 0.
n—oo le
Proof.
We suppose for simplicity that x,, > +o0 asn — oo,
1. By hypothesis, y, = M, for some My € R. Let M € R and set M; = M — M,. Since x,, -
+ 00, choose N € N such thatn > N implies x,, > M;. Thenn = N implies x,, + y,, > M; +
MO =M.
2. LetM € Rand set M; = A—Z Choose N € N such thatn > N implies x;, > M;. Since ¢ > 0,

we conclude that ax,, > aM; = M foralln = N.

An Introduction to Analysis Page 26



3. LetM € Rand set M; = A—I/Iw— Choose N € N such thatn = N implies x,,y,, > M{My, = M.
0

4. Lete > 0.Choose M > 0 such that |yn| < My and M; > 0 so large that% < €.Choose N €
1

N such thatn > N implies x,, > M;. Thenn > N implies x,, > M;. Thenn = N implies
M
Xn Xn M

If we adopt the conventions

X + 00 = 00, X — 00 = —00, x€R

X 00 =00, X+ (—00) = —oo, x>0,

X+ 00 = —00, x - (—0) = oo, x <0,

0 + 00 = 0, —00 — 00 = —00,

000 = (—0):(—) =00, and - (—00) = ()00 = —0o,

2.16 Corollary.
Let {xn}, {yn} be real sequences and «, x, y be extended real numbers. If x,, = x and y,, = y, as
n — oo, then

lim (x, +y) =x+y

n—oo

Provided that the right side is not of the form co — oo, and
lim (axn) = ax, lim (x,y,) = xy
n—oo

n—-oo
Provided that none of these products is of the form 0 - +oo.
We have avoided the cases 0 — co and 0 - oo because they are "indeterminate"”. For a

discussion of indeterminates forms, see I'Hospital's Rule in Section 4.4

2.17 Theorem. [Comparison Theorem].

Suppose that {xn} and {yn} are convergent sequences. If there is an N € N such that
Xp <y, forn=N,,

Then
lim x, < lim y,.
n—-oo n—-oo

In particular, if x,, € [a, b] converges to some point ¢, then ¢ must belong to [a, b].

Proof. Suppose that the first statement is false; that is (1) holds but x := lim,,_,, x,, is greater
than y = lim,,_,, y,. Sete = % Choose N; > N, such that |xn - x| < €eand |yn - y| < € for
n = N;. Then for such an n,

X — X —
xn>x—6=x—(—2}i>=y+(—zz>=y+€>)’n,
Which contradicts (1). This proves the first statement.
We conclude by noting that the second statement follows from the first, sincea < x, < b

impliesa < c < b.

One way to remember this result is that it says the limit of an inequality is the inequality of the
limits, provided these limits exist. We shall call this process "taking the limit of an inequality".
Since x,, < y, implies x,, < y,, the Comparison Theorem contains the following corollary: If {xn}
and {yn} are convergent real sequences, then

Xn < Vn, n = N, imply Tlll_r)go Xp < rlll_r)lc‘}o Vi -

It is important to notice that this result is false if < is replaced by <; that is
Xn < Yn, n = N, does NOT imply that lim x,, < lim y,.
n—oo

n—-oo
1

1 o
For example, =< but the limits of these sequences are equal.
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2.3 Bolzano-Weierstrass Theorem
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2.18 Definition.
Let {x,} _ bea sequence of real numbers.

1. {xn} is said to be increasing (respectively, strictly increasing) if and only if x; < x, < -+
(respectively, x; < xp < -+*)
2. {xn} is said to be decreasing (respectively, strictly decreasing) if and only if x; = x, > -+
(respectively, x; > x, > --+).
3. {xn} is said to be monotone if and only if it is either increasing or decreasing.
(Some authors call decreasing sequences nonincreasing and increasing sequences
nondecreasing.)

2.19 Theorem. [Monotone Convergence Theorem].
If {xn} is increasing and bounded above, or if {xn} is decreasing and bounded below, then {xn}
converges to a finite limit.

Proof.
Suppose first that {xn} is increasing and bounded above. By the Completeness Axiom, the
supremum q = sup{xn: ne N} exists and is finite. Let € > 0. By the Approximation Property for
Suprema, choose N € N such that

a—e<xy<a.
Since xy < x, forn = Nand x,, < aforalln € N, it follows thata — € < x, < aforalln = N.In
particular, x,, T aasn — oo.
If {xn} is decreasing with infimum b := inf{xn: ne N}, then {—xn} is increasing with supremum
— b (see Theorem 1.20). Hence, by the first case and Theorem 2.12ii,

b=—(—b) = — lim (—xn) = lim x,,.

n—-oo n—-oo

The Monotone Convergence Theorem is used most often to show that a limit exists. Once
existence has been established, it is often easy to find the value of that limit by using Theorems
2.9 and 2.12. The following examples illustrate this fact.

2.20 Example.
If |a] < 1,thena™ » 0asn — oo,
Proof.
It suffices to prove that |a|® — 0 as n — oo. First, we notice that |a|™ is monotone decreasing
since by the Multiplicative Property, |a| < 1 implies |a|®*? < |a|™ for all n € N. Next, we
observe that |a|™ is bounded below (by 0). Hence by the Monotone Convergence Theorem, L :=
lim,,_,.|a|™ exists.
Take the limit of the algebraic identity |a|®** = |a]| - |a|®, as n — oo. By Remark 2.6 and
Theorem 2.12, we obtain L = |a| - L. Thus either L = 0 or |a| = 1. Since |a| < 1 by
hypothesis, we conclude that L = 0.
2.21 Example.

1
Ifa > 0,thenan » 1asn — oo.
Proof.
We consider three cases.

1 1
Casel.a = 1. Thenar = 1 foralln € N, and it follows that an - 1 asn — oo,

1
Case 2. a > 1. We shall apply the monotone Convergence Theorem. To show that {aﬁ} is
decreasing, fix n € N and notice that a > 1 implies a™*! > a™. Taking the n(n + 1)st root of this

1 1
1nequa11ty, we obtain an > an+1; that is, an is decreasing. Since a > 1 implies an > 1, it follows

that an is decreasing and bounded below. Hence, by the Monotone Convergence Theorem, L :=

2
1 1 1
lim,,_, an exists. To find its value, take the limit of the identity (aﬁ) =anasn — o, We
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1
obtain L? = L; thatis, L = 0 or 1. Since an > 1, the Comparison Theorem shows that L > 1.

Hence L = 1.
Case3.0<a< 1. Then% > 1. It follows from Theorem 2.21 and Case 2 that
1
lim an = lim—1—=— ! - = 1.
n—oo n—-o00 — . T
a% hmn"”(%)

Next, we introduce a monotone property for sequences of sets.

2.22 Definition.
A sequence of sets {In}neN is said to be nested if and only if

L 21, 2.
2.23 Theorem. [Nested Interval Property].
If {In}neN is a nested sequence of nonempty closed bounded intervals, then E := N;_4 I, is
nonempty. Moreover, if the lengths of these intervals satisfy |In| — 0 asn — oo, then E is a single
point.

Proof.

Let I, = [an, bn]. Since {In} is nested, the real sequence {an} is increasing and bounded above by
by, and {bn} is decreasing and bounded below by a, (see Figure 2.2). Thus by Theorem 2.19, there
exist a,b € Rsuchthata, T aand b, | b asn — . Since a,, < b, for alln € N, it also follows

from the Comparison Theorem that a,, < a < b < b,. Hence, a number x belongs to I,, for all
n € Nifand only if a < x < b; that is, if and only if x € [a, b]. In particular, any x € [a, b] belongs
to all the I;'s.

We have proved that there is exactly one number that belongs to all the I,,'s if and only if a = b.
But if |In| — 0asn — o, then b, — a,, » 0 asn — co. Hence, by Theorem 2.12, a does equal b
when |In| - 0asn — oo,

2.24 Remark.
The Nested Interval Property might not hold if "closed" is omitted.

Proof.
The intervals I,, = (0, %) ,n € N, are bounded and nested but not closed. If there were an x € I,

foralln € N,then 0 < x < %; thatis, n < ifor all n € N. Since this contradicts the Archimedean
Principle, it follows that the intervals I,, have no point in common.

2.25 Remark.
The Nested Interval Property might not hold if "bounded" is omitted.

Proof.
The intervals I,, = [n,),n € N are closed and nested but not bounded. Again, they have no
point in common.

We are now prepared to establish the main result of this section.

2.26 Theorem. [Bolzano-Weierstrass Theorem].
Every bounded sequence of real numbers has a convergent subsequence.

Proof.

We begin with a general observation. Let {xn} be any sequence. If E = AU B are sets and E
contains x,, for infinitely many values of n, then at least one of the sets A or B also contains x,,
for infinitely many values of n. (If not, then E contains x,, for only finitely many n, a
contradiction.)

Let [xn} be a bounded sequence. Choose a, b € R such that x,, € [a, b] foralln € N, and set [, =

[a, b]. Divide I, into two halves, say I' = [a,aTer and ! = [g;r—b, b] .Sincel, =1' U I", atleast
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one of these half-intervals contains x,, for infinitely many n. Call it I;, and choose n; > 1 such
: I b—
that x,,, € I;. Notice that |Il| = |2—°| = Ta
Suppose that closed intervals I, © I; D -+ D I;; and natural numbers n; < n, < --- < n,, have
been chosen such that foreach 0 < k < m,
b—a
|Ik| =% Xny, € Iy, and x,, € [}, for infinitely many n
. . b
To choose Iy 41, divide I, = [am, bp| into two halves, say I’ = [am, a—m;r—m] and " =
[am+bm_
2 )
many n. Call it I, 4, and choose 1,1 > ny, such thatx,, . € Ly.4. Since
|Im| b—a
mia| = =57 = St

bm]. Since I,,, = I' U I", at leasst one of these half-intervals contains x,, for infinitely

It follows by induction that there is a nested sequence {Ik}kEN of nonempty closed bounded

intervals that satisfy (2) for all k € N.
By the Nested Interval Property, there is an x € R that belongs to I, for all k € N. Since x € I,
we have by (2) that
b
0< |xnk —x| < |Ik| SW_
For all k € N. Hence by the Squeeze Theorem, x,, — x as k — .
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2.4 Cauchy Sequences
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2.27 Definition.
A sequence of points x,, € R is said to be Cauchy (in R) if and only if for every € > 0 there is an
N € N such that

nm=N imply |x,—xn|<e

2.28 Remark.

If {xn} is convergent, then {xn} is Cauchy.
Proof.

Suppose that x,, = a as n = oo. Then by definition, given € > 0 there is an N € N such that
|xn - a| < ;for alln = N.Hence ifn,m = N, it follows from the triangle inequality that

€

;=€

€
|t — xm| < |xn — a| + |xm — q <5+

2.29 Theorem. [Cauchy].

Let {x,,} be a sequence of real numbers. Then {x, } is Cauchy if and only if {x,, } converges (to some

point a in R).

Strategy: By Remark 2.28, we need only show that every Cauchy sequence converges. Suppose
that {xn} is Cauchy. Since the x,,'s are near each other, the sequence {xn} should be bounded.
Hence, by the Bolzano-Weierstrass Theorem, {xn} has a convergent subsequence, say x, . This
means that for large k, the x;, 's are near some point a € R. But since {xn} is Cauchy, the x,,'s
should be near the xy, 's for large n, hence also near a. Thus the full sequence should converge
to that same point a. Here are the details.

Proof.
Suppose that {xn} is Cauchy. Given € = 1, choose N € N such that |xN - xm| < 1forallm = N.
By the triangle inequality,

|xm| <1+ |xN| form = N.
Therefore, {xn} isbounded by M = max{|x1|, |x2|, e |xN_1 , 1+ |xN|}.
By the Bolzano-Weierstrass Theorem, {xn} has a convergent subsequence, say x,, »> aask -
oo, Let € > 0. Since x,, is Cauchy, choose N; € N such that

€
n,m = N; imply |xn —xm| < ok
Since x,, = a as k —» o, choose N, € N such that
€

k = N, implies |xnk — al < >
Fix k = N, such that n;, = N;. Then
|xn - a| < |xn —xnk| + |xnk - a| <€

Foralln = N;.Thus x, = a asn — oo.

The result is extremely useful because it is often easier to show that a sequence is Cauchy than to
show that it converges. The reason for this, as the following example shows, is that we can prove
that a sequence is Cauchy even when we have no idea what its limit is.

2.30 Example.
Prove that any real sequence {x,,} that satisfies

|xn—xn+1| Sﬁ" n €N,

is convergent.

Proof.
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If m > n, then

|xn - xml = |xn —Xp41 T Xpy1 — Xpgo + o H X1 — xm|
< |xn - xn+1| + |xn+1 - xn+2| + et |xm—1 - xml
1 1
< ﬁ'+ et Zm_l-

m-n
1 1 1 1
ZEEZZ_kzzn—l 1_2m—n )
k=1

. 1 .
(The last step uses Exercise 1.4.4c, for a = 2.) It follows that |xn - xm| <o for all integers m >

n = 1. But given € > 0, we can choose N € N so large thatn > N implies Z—nl_—l < €. We have

proved that {xn} is Cauchy. By Theorem 2.29, therefore, it converges to some real number.

The following result shows that a sequence is not necessarily Cauchy just because x,, is near
Xn41 forlarge n.

2.31 Remark.
A sequence that satisfies x, 1 — x,, = 0 is not necessarily Cauchy.

Proof.
Consider the sequence x,, = logn . By basic properties of logarithms (see Exercise 5.3.7),

n+1
Xn41 — Xn = log(n + 1) —logn = log — —-logl1=0

Asn — oo, {xn} cannot be Cauchy, however, because it does not converge; in fact, it diverges to
+ coasn — oo,
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*2.5 Limits Supremum and Infimum
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The Section is not complete. Space holder.

2.32 Definition.
Let {x,,} be a real sequence. Then the limit supremum of {x,,} is the extended real number
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Chapter 3 Functions on R
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3.1 Two-sided Limits

20184F10830H 12:13

3.1 Definition.
Let a € R, let I be an open interval which contains a, and let f be real function defined
everywhere on I expect possibly at a. Then f(x) is said to converge to L, as x approaches g, if
and only if for every € > 0 thereisa § > 0 (which in general depends on ¢, f, I, and a) such that
0<|x—al<§ implies [f(x)—L|<e.
In this case we write
L= )lci_r}}lf(x) orf(x) »L asx - a,

And call L the limit of f(x) as x approaches a.

3.2 Example.
Suppose that f(x) = mx + b, where m, b € R. Prove that
f(a) = lim f(x)
x—-a
Foralla € R.
Proof.
If m = 0, there is nothing to prove. Otherwise, given € > 0, set § = I_mE_I If |x —al < 6§, then

|f () = f(@)| = Imx + b — (ma + b)| = |m||x —a| < |m|§ =e.
Thus by definition, f(x) - f(a) as x — a.
Sometimes, in order to determine &, we must break f(x) — L into two factors, replacing the less
important factor by an upper bound.

3.3 Example.
If f(x) = x? + x — 3, prove that f(x) » —lasx — 1.
Proof.

Let € > 0 and set L = —1. Notice that

fX)—L=x?>+x—-2=(x—-1(x+2).
If0 < § <1,then |x — 1| < § implies 0 < x < 2, so by the triangle inequality, |x + 2| < |x| +
2 < 4.Set § = min {1,%}. It follows that |[x — 1| < §, then

lfG) —Ll=lx—1llx+2|<4lx -1 <45 <e
Thus by definition, f(x) - Lasx — 1.

Before continuing, we would like to draw your attention to two features of Definition 3.1:
Assumption 1. The interval I is open; Assuption 2.0 < |[x — al.If | = (¢, d) is an open interval
and &, = min{a — ¢,d — a}, then |x — a| < §, implies x € I. Hence, Assuption 1 guarentees that
for & > 0 sufficiently small, f(x) is defined for all x # a satisfying |x — a| < & (i.e.,, on BOTH
sides of a). Since |x — a| > 0 is equivalent to x # a, Assumption 2 guarentees that f can have a
limit at a without being defined at a. (This will be cricial for defining derivatives later.)

The next result shows that even when a function f is defined at a, the value of the limit of f ata
is, in general, independent of the value f(a).

3.4 Remark.
Let a € R, let I be an open interval which contains a, and let f, g be real functions defined
everywhere on I except possibly at a. If f(x) = g(x) forallx € I \ {a}and f(x) - Lasx — a,
then g(x) also has a limitas x — a, and

lim g(x) = lim f(x).

x—a X—a
Proof.
Let € > 0 and choose § > 0 small enough so that (1) holds and |x — a| < § implies x € I.
Suppose that 0 < |x — a| < §. We have f(x) = g(x) by hypothesis and |f(x) — L| < e by (1) . It
follows that |g(x) — L| <e.
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Thus to prove that a function f has a limit, we may begin by simplifying f algebraically, even
when that algebra is invalid at finitely many points.

3.5 Example.
Prove that
x3+x2—-x—1
g(x) - xz _ 1

Has alimitas x — 1.

Proof.
Set f(x) = x + 1 and observe by Example 3.2 that f(x) - 2 as x — 1. Since
x3+x2—x—-1 (x+1D(x*-1
g =" == xz(_l ) - reo
For x # +1, it follows from Remark 3.4 that g(x) has alimit as x — 1 (and that limit is 2).

3.6 Theorem. [Sequential Characterization of Limits].

Let a € R, let I be an open interval which contains a, and let f be a real function defined
everywhere on I except possibly at a. Then

L =lim f(x)
x—-a
Exists if and only iff(xn) — L asn — oo for every sequence x,, € I \ {a} which converges to a as
n — oo,

Proof.

Suppose that f converges to L as x approaches a. Then given € > 0 there isa § > 0 such that (1)
holds. If x,, € I \ {a} converges to a as n — oo, then choose an N € N such that n > N implies
|xn - a| < §.Since x;, # aq, it follows from (1) that |f(xn) - L| < e foralln = N. Therefore,

f(xn) - Lasn - oo.

Conversely, suppose that f(xn) — L asn — oo for every sequence x,, € I \ {a} which converges
to a. If f does not converge to L as x approaches a, then there is an € > 0 (call it €;) such that
the implication 0 < |x — a| < & implies |f(x) — L| < €, does not hold for any § > 0. Thus, for
each § = %,n € N, there is a point x,, € I which satisfies two conditions: 0 < |xn - a| < %and

| (xn) — L| = €. Now the first condition and the Squeeze Theorem (Theorem 2.9) imply that
xn # a and x, — a so by hypothesis, f(x,) = L, asn - . In particular, |f(x,) — L| < € forn
large, which contradicts the second condition.

3.7 Example.
Prove that

et
f(X): Sll’l; x#0

0 x=0
Has no limit as x — 0.

Proof.
By examining the graph of y = f(x) (see Figure 3.1), we are led to consider two extremes:

= = € N.
tn (4n+ Dn and by (4n + 3)7’ "
Clearly, both a,, and b,, converge to 0 as n — 0. On the other hand, since f(a,) = 1 and f(b,) =
—1foralln €N, f(an) - 1and f(bn) — —1 asn - oo. Thus by Theorem 3.6, the limit of f(x),

as x — 0, cannot exist.

Theorem 3.6 also allows us to translate results about limits of sequences to results about limits
of functions. The next three theorems illustrate this principle.

Before stating these results, we introduce an algebra of functions. Suppose that f, g: E = R. For
each x € E, the pointwise sum, f + g, of f and g is defined by
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(f +9)®) = f(x) + g(x),
The scalar product, af, of a scalar ¢ € R with f, by
(af)(x) = af (x),
The pointwise product, fg, of f and g, by
(fg)(x) = f()g(x),
And (when g(x) # 0) the pointwise quotient, g, of f and g, by

f f(x)
2w =22
g g)

The following result is a function analogue of Theorem 2.12

3.8 Theorem.
Suppose that a € R, that I is an open interval which contains a, and that f, g are real functions
defined everywhere on I except possibly at a. If f(x) and g(x) converge as x approaches a, then

sodo (f + g)(x), (fg)(x), (af)(x),and (5) (x) (when the limit of g(x) is nonzero). If fact,

lim(f + g)(x) = lim f(x) + lim g(x),

x—-a x—a xX—-a

1im(af)(x) =alim f(x),

x—a x—-a

lim(fg)(x) = lim £(x) lim g(x),

x—-a xX—a xX—a
And (when the limit of g(x) is nonzero)

AN A2
Jl(l_r)l’cll (E) () = lim g(x)

x—-a

Proof.
Let

L:=lim f(x) and M := lim g(x).

x—-a x—-a

If x,, € I\ {a} converges to a, then by Theorem 3.6, f(xn) - Land g(xn) — M asn — oo. By
Theorem 2.12i, f(xn) + g(xn) — L 4+ M as n — oo. Since this holds for any sequence x,, € I \ {a}
which converges to a, we conclude by Theorem 3.6 that

lim(f + g)(x) =L+ M=1limf(x)+ lim g(x).

x—-a x—-a x—a
The other rules follow in an analogous way from Theorem 2.12ii through 2.12iv.

Similarly, the Sequential Characterization of Limits can be combined with the Squeeze and
Comparison Theorems for sequences to establish the following results.

3.9 Theorem. [Squeeze Theorem for Functions].
Suppose that a € R, that ] is an open interval which contains a, and that f, g, h are real functions
defined everywhere on I except possibly at a.
1. Ifg(x) < h(x) < f(x)forallx €I\ {a}, and
lim f(x) = lim g(x) =L,
X—a xX—a
Then the limit of h(x) exists, as x — a, and
Jlg_r)rcll h(x) = L.
2. If|g(x)| < Mforallx € I\ {a}and f(x) » 0 asx — a, then
lim f(x)g(x) = 0.
3.10 Theorem. [Comparison Theorem for Functions].
Suppose that a € R, that I is an open interval which contains a, and that f, g are real functions
defined everywhere on I except possibly at a. If f and g have a limit as x approaches a and
f(x) < g(x)forallx € I\ {a}, then
lim f(x) < lim g(x).

We shall refer to this last result as taking the limit of an inequality.

The limit theorems (Theorems 3.8, 3.9, and 3.10) allow us to prove that limits exist without resorting
toe'sand §'s.

3.11 Example.

An Introduction to Analysis Page 37



Prove that
x—1

lim ——— =
*013x + 1
Proof.
By Example 3.2,x —1 - 0and 3x + 1 - 4 asx — 1. Hence, by Theorem 3.8, ;x—;ll— - % =0as

x - 1.
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3.2 One-sided Limits and Limits at Infinity

2018511817 428

3.12 Definition.
Let a € R and f be a real function.

1. f(x) is said to converge to L as x approaches a from the right if and only if f is defined on
some open interval I with left endpoint a and for every € > 0 thereisa § > 0 (which in
general depends on ¢, f, I, and a) such that

a+6€l anda<x<a+ 4§ imply |f(x)—L| < €.
In this case we call L the right-hand limit of f at a, and denote it by
fla+) =1L =:xlircr11+f(x).

2. f(x)is said to converge to L as x approaches a from the left if and only if f is defined on
some open interval [ with right endpoint a and for every € > 0 thereisa § > 0 (which in
general depends on e, f,I and a) suchthata —§ € land a — § < x < a imply |f(x) - L| <
€. In this case we call L the left-hand limit of f at a and denote it by

fla=)=1L=: lim f(x).

3.13 Examples.
1. Prove that
x+1x=0

f(x):{x—1 x <0
Has one-sided limits at a = 0 but lim,._,o f (x) does not exist.

2. Prove that
lim /x = 0.
x—07t

Proof.

1. Lete >0andsetd = €.1f0 < x < §, then |f(x) — 1| = |x| < § < €. Hence lim,_,q+ f (%)

—1\n
exists and equals 1. Similarly, lim,_,o- f(x) exists and equals —1. However, x, = ( rll) -0

but f(xn) =(-D" (1 + %) does not converge as n = . Hence by the Sequential

Characterization of Limits, lim,_,, f(x) does not exist.
2. Lete > Oandsetd = €2.1f0 < x < §, then |f(x)| = vx < V& =¢.

Not every function has one-sided limits (see Example 3.7). Examples 3.13 show that even when

a function has one-sided limits, it may not have a two-sided limit. The following result, however,
shows that if both one-sided limits, at a point a, exist and are EQUAL, then the two-sided limit at
a exists.

3.14 Theorem.
Let f be a real function. Then the limit

lim f(x)
x—a
Exists and equals L if and only if

b= Jim 76 = Jim ).

Proof.

If the limit L of f(x) exists as x — a, then given € > 0 choose § > O suchthat0 < |[x —a| < §
implies |f(x) - L| < €. Since any x which satisfiesa < x <a+ d ora — § < x < a also satisfies
0 < |x — al < §, itis clear that both the left and right limits of f(x) exist as x — a and satisfy (3).
Conversely, suppose that (3) holds. Then given € > 0 there exists a §; > 0 (respectively, a §, >
0) such thata < x < a + §; (respectively, a — §, < x < a) implies |f(x) - L| <€ Setd =
min{64,6,}. Then 0 < |x — a| < § impliesa < x < a + §; ora — &, < x < a (depending on
whether x is to the right or to the left of a). Hence (1) holds; thatis f(x) = Las x — a.

3.15 Definition.
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Leta,L € R and let f be a real function.

1. f(x)is said to converge to L as x — o if and only if there exists a ¢ > 0 such that (¢, ») c
Dom(f) and given € > 0 there isan M € R such that x > M implies |f(x) - L| <€, in
which case we shall write

,}L‘E‘of(x) =L or f(x) > Lasx — .

Similarly, f(x) is said to converge to L as x = —oo if and only if there exists a ¢ > 0 such
that (¢, —0) c Dom(f) and given € > 0 there isan M € R such that x < M implies
|f(x) — L| < €, in which case we shall write

,;i_r){}of(x) =L or f(x) » Lasx — oo.

2. The function f(x) is said to converge to o as x — a if and only if there is an open interval /
containing a such that I \ {a} € Dom(f) and given M € R thereisa § > 0 such that 0 <
|x — a| < & implies f(x) > M, in which case we shall write
chi_r}glf(x) = o0 or f(x) » o asx — a.

Similarly, f(x) is said to converge to —oo as x — a if and only if there is an open interval /
containing a such that I \ {a} € Dom(f) and given M € R thereisa d > 0 such that 0 <
|x —a| < 6§ implies f(x) < M, in which case we shall write

lim f(x) = — or f(x) > —oasx - a.
xX—-a

3.16 Examples.
1. Prove that% - 0asx — oo.
2. Prove that

I () = i x+2 _
xlr{l—f X) = xlr{l— 2x2—3x+1
Proof.

1

1. Giver16>O,setM=§.Ifx>M,then|%| :§<M=E.Thus%—>0asx—>oo.

2. Let M € R. We must show that f(x) < M for x near but to the left of 1 (no matter how
large and negative M is). Without loss of generality, assume that M < 0. As x converges to
1 from the left, 2x? — 3x + 1 is negative and converges to 0. (Observe that 2x? — 3x + 1is

a parabola opening upward with roots % and 1.) Therefore, choose § € (0,1) such that 1 —

0 <x< 1implies£< 2x2—-3x+1< 0;thatis,——2—1—> (—M—) > 0.Since0<x<1
M 2x4—3x+1 2

also implies 2 < x + 2 < 3, it follows that — 2x+2— > (—M); that is,
2x4—3x+1
) = x+ 2 <
f) = v
Foralll-d6 <x < 1.

In order to unify the presentation of one-sided, two-sided, and infinite limits, we introduce the
following notation. Let a be an extended real number, and let I be a nondegenerate open
interval which either contains a or has a as one of its endpoints. Suppose further that f is a real
function defined on I except possibly at a. If a is finite and I contains a, then

lim f(x)
x—-a
X€EI

Will denote lim,._,, f(x) (when it exists); if a is a finite left endpoint of I, then (4) will denote
lim, .4 f(x) (when it exists); if a is a finite right endpoint of I, then (4) will denote

lim,_,,- f(x) (when it exists); if a = + o0 is an endpoint of I, then (4) will denote lim,_, 4 f(x)
(when each exists).

Using this notation, we can state a Sequential Characterization of Limits valid for two-sided,
one-sided, and infinite limits.

3.17 Theorem.

Let a be an extended real number, and let I be a nondegenerate open interval which either
contains a or has a as one of its endpoints. Suppose further that f is a real function defined on /
except possibly at a. Then

lim f(x)
xX—a
x€l

Exists and equals L if and only iff(xn) - L for all sequences x,, € I which satisfy x,, # a and
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X, 2 aasn — oo,

Proof.

Since we have already proved this for two-sided limits, we must show it for the remaining eight
cases which notation (4) represents. Since the proofs are similar, we shall give the details for
only one of these cases, namely the case when a belongs to I and L = oo. Thus, we must prove
that f(x) - o as x — aifand only iff(xn) — oo for any sequence x, € [ which converges to a
and satisfies x,, # a forn € N.

Suppose first that f(x) » o asx - a.Ifx, €1, x, > aasn - o, and x,, # a, then given M € R
thereisa d > 0 such that 0 < [x — a| < § implies f(x) > M, and thereis an N € N such thatn >
N implies |x, — a| < §. Consequently, n > N implies f(x,,) > M; thatis, f(x,) - ©asn > o as
required.

Conversely, suppose to the contrary that f(xn) — oo for any sequence x, € [ which converges
to a and satisfy x,, # a but f(x) does NOT converge to o as x — a. By the definition of
"convergence" to co there are numbers M, € R and x,, € I such that |xn — a| < %and f(xn) <

M, for all n € N. The first condition implies x,, = a but the second condition implies that f (x;,)
does not converge to o as n = oo. This contradiction proves Theorem 3.17 in the case a € I and
L = oo,

Using Theorem 3.17, we can prove limit theorems that are function analogues of Theorem 2.15
and Corollary 2.16. We leave this to the reader and will use these results as the need arises.

3.18 Example.

Prove that
o 2x2-1
AT T T
Proof.

Since the limit of a product is the product of the limits, we have by Example 3.16i that x—in - 0as

x — oo for any m € N. Multiplying numerator and denominator of the expression above by 1/x?2,
we obtain

: 1
2x%2 — 1 2—;17 ,}E{,‘o<2—p) 2
lim — - = lim = 1 =——1=—2.
e LT TP 14— lim (—1 +—2) B
X X—00 X
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3.3 Continuity

20185F1182H 18:56

3.19 Definition.
Let E be nonempty subset of Rand f: E - R.
1. fis said to be continuous at a point a € E if and only if given € > 0 thereisa § > 0 (which
in general depends on ¢, f, and a) such that
|x —al <6 and x € E imply |f(x) —f(a)| < €.
2. f issaid to be continuous on E (notation: f: E = R is continuous) if and only if f is
continuous at every x € E.

3.20 Remark.
Let I be an open interval which contains a point a and f:I = R. Then f is continuous at a € [ if
and only if

fl@) = lim f(x).

Proof.

Suppose that I = (c,d) and set §, := min{|c — al, |d — a|}.If § < §,, then |x — a| < § implies

x € I. Therefore, condition (5) is identical to (1) when f(a) = L,E = I,and § < §,. It follows that
f is continuous at a € I ifand only if f(x) - f(a) asx - a.

3.21 Theorem.
Suppose that E is a nonempty subset of R, that a € E, and that f: E — R. Then the following
statements are equivalent:

1. fiscontinuousata € E.

2. If x, converges to a and x,, € E, then f(xn) - f(a) asn - oo.

3.22 Theorem.
Let E be a nonempty subset of R and f, g: E = R.If f, g are continuous at a pointa € E
(respectively, continuous on the set E), then so are f + g, fg, and af (for any @ € R). Moreover,

gis continuous at a € E when g(a) # 0 (respectively, on E when g(x) # 0 forall x € E).

It follows from Exercise 3.1.6, 3.1.7, and 3.1.8 that if f, g are continuous at a pointa € E oron a
set E, then so are |f|,f+,f‘,f V g,and f A g. We also notice by Exercise 3.2.3 that every
polynomial is continuous on R.

3.23 Definition.
Suppose that A and B are subsets of R, that f: A - Rand g: B = R.If f(A) € B for every x € 4,
then the composition of g with f is the function g o f: A - R defined by

(go ) =g(fx)), xeA

3.24 Theorem.
Suppose that A and B are subsets of R, that f: A - Rand g: B — R, and that f(x) € B for every
x € A.
1. If A := 1\ {a}, where I is a nondegenerate interval which either contains a or has a as one
of its endpoints, if
L= lim f(x)
x—a
x€l
Exists and belongs to B, and if g is continuous at L € B, then

lim(gef)(x) =g (}Cigrcllf(x)>-

X€l X€EI
2. If f is continuous at a € A and g is continuous at f(a) € B, then g o f is continuous ata €
A.
Proof.
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Suppose thatx,, € I \ {a} and that x,, > a asn — 0. Since f(4) € B, f(x,) € B. Also, by the
Sequential Characterization of Limits (Theorem 3.17), f(xn) — Lasn — . Since g is

continuous at L € B, it follows from Theorem 3.17, g o f(x) = g(L) as x = a in I. This proves i).
A similar proof establishes part ii).

3.25 Definition.

Let E be a nonempty subset of R. A function f: E = R is said to be bounded on E if and only if
there isan M € R such that |f(x)| < M for all x € E, in which case we shall say that f is
dominated by M on E.

3.26 Theorem. [Extreme Value Theorem].
If I is a closed, bounded interval and f: I — R is continuous on /, then f is bounded on I.
Moreover, if
M =sup f(x) and m = inf f(x),
x€l xX€El

Then there exist points, x;,,, x3; € I such that
f(xy) =M and f(x,,) = m.

Proof.
Suppose first that f is not bounded on I. Then there exist x,, € I such that

|f(xn)|>n, n €N,
Since I is bounded, we know (by the Bolzano-Weierstrass Theorem) that {xn} has a convergent
subsequence, say x,, — a as k - . Since [ is closed, we also know (by the Comparison
Theorem) that a € I. In particular, f(a) € R. On the other hand, substituting n; for n in (7) and
taking the limit of this inequality as k — o, we have |f(a)| = o, a contradiction. Hence, the
function f is bounded on I.
We have proved that both M and m are finite real numbers. To show that there is an x;; € I such
that f(xM) = M, suppose to the contrary that f(x) < M for all x € I. Then the function

90 == 00
Is continuous, hence bounded on I. In particular, there is a C > 0 such that |g(x)| =gkx)<C.It
follows that

1

fx) <=M - C

For all x € I. Taking the supremum of (8) over all x € I, we obtain M < M — % <M,a

contradiction. Hence, there is an x,; € I such that f (xM) = M. A similar argument proves that
there is an x,,, € I such that f(xm) =m.

3.27 Remark.
The Extreme Value Theorem is false is either "closed" or "bounded" is dropped from the
hypotheses.

Proof.
The interval (0, 1) is bounded but not closed, and the function f(x) = i is continuous and

unbounded on (0, 1). The interval [0, o) is closed but not bounded, and the function f(x) = x is
continuous and unbounded on [0, o).

3.28 Lemma.

Suppose that a < b and that f:[a, b) - R.If f is continuous at a point x, € [a, b) and f(x,) > 0,
then there exist a positive number € and a point x; € [a, b) such that x; > x, and f(x) > € for
all x € [xq,x].

Strategy: The idea behind this proof is simple. Iff(xo) > 0, then f(x) > %xo) for x near x,. Here

are the details.
Proof.
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Lete =
implies x € [a, b). Use Definition 3.19 to choose 0 < § < §, such thatx € [a,b) and |x — xo| < &
imply |f(x) — f(x0)| < €.

Fixx; € (xo, Xg + 5) and suppose that x € [xo, xl]. By the choice of € and §, it is clear that

flx flx
—i§Q<f@>—ﬂ%)<—%ﬁ-
Solving the left-hand inequality for f(x), we conclude that f(x) > f_(;m_) = €, as promised.

. . b-xg . o
f—(;co—) Since xy < b, itis easy to see that §; := —% is positive and that a < x < xy + §

A real number yj is said to lie between two numbers c and d ifand only if c < yy < dord <
Yo <C.

3.29 Theorem. [Intermediate Value Theorem)].
Suppose that a < b and that f: [a, b] - R is continuous. If y, lies between f(a) and f(b), then
there is an x, € (a, b) such that f(x) = y,.

Proof.

We may suppose that f(a) < y, < f(b). Consider the set E = {x € [a, b]: f(x) < y,} (see Figure
3.3).Since a € E and E < [a, b], E is a nonempty, bounded subset of R. Hence, by the
Completeness Axiom, x, := sup E is a finite real number. It remains to prove that x, € (a, b) and
f (Xo) = Yo-

Choose by Theorem 2.11 a sequence x,, € E such that x,, > x; asn — . Since E € [a, b], it
follows from Theorem 2.17 that x, € [a, b]. Moreover, by the continuity of f and the definition
of E, we have f(xo) = lim,_q f(xn) < Y.

To show that f(xo) = y,, suppose to the contrary that f(xo) < yo.Thenyy — f(x)isa
continuous function on the interval [a, b) whose value at x = x, is positive. Hence, by Lemma
3.28, we can choose an € and an x; > X, such that yg — f(xl) > € > 0. In particular, x; € E and
X, > sup E, a contradiction.

We have shown that x, € [a, b] and y, = f(x,). In view of our opening assumption, f(a) < y, <
f(b), it follows that x, cannot equal a or b. We conclude that x, € (a, b).

Thus, if f is continuous on [a, b] and f(a) < y, < f(b), then there is an x, € [a, b] such that

f(xo) = Yo-

If f fails to be continuous at a point a, we say that f is discontinuous at a and call a a point of
discontinuity of f. How badly can a function behave near a point of discontinuity? The following
examples can be interpreted as answers to this question. (See also Exercise 9.6.9)

3.30 Example.
Prove that the function

x| 0
f) =273 **
1 x=0

Is continuous on (—, 0) and [0, ), discontinuous at 0, and that both f(0+) and f(0—) exist.

Proof.
Since f(x) = 1 forx > 0, itis clear that f(0 +) = 1 exists and f(x) = f(a) asx = a forany a >
0. In particular, f is continuous on [0, o). Similarly, f(0 —) = —1 and f is continuous on

(—o0,0). Finally, since f(0 +) # f(0 —), the limit of f(x) as x —» 0 does not exist by Theorem
3.14. Therefore, f is not continuous at 0.

3.31 Example.
Assuming that sin x is continuous on R, prove that the function

1
in— 0
flx) = smx X #

1 x=0
Is continuous on (—oo, 0) and (0, o), discontinuous at 0, and neither f(0+) nor f(0 —) exists.
(see Figure 3.1.)
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Proof.
The function i is continuous for x # 0 by Theorem 3.8. Hence, by Theorem 3.24, f(x) = sin G)

is continuous on (—o0, 0) and (0, ). To prove that f(0+) does not exist, let x,, = and

2
@n+1)n’
observe (see Appendix B) that sin (xi) = (—1)™,n € N. Since x,, { 0 but (—1)" does not
converge, it follows from Theorem 3.21 (the Sequential Characterization of Continuity) that
f(0+) does not exist. A similar argument proves that f(0 —) does not exist.

3.32 Example.
The Dirichlet function is defined on R by
1 xeQ

f@) = {0 reqQ
Prove that every point x € R is a point of discontinuity of f. (Such functions are called nowhere
continuous.)
Proof.
By Theorem 1.18 and Exercise 1.3.3 (Density of Rationals and Irrationals), given any a € R and
6 > 0 we can choose x; € Q and x, € R\ Q such that |xl~ - a| < 6 fori =1,2.Since f(xl) =1
and f(x;) = 0, f cannot be continuous at a.

3.33 Example.
Prove that the function

x = s € Q (in reduced form)

1
f(x)=1q
0 x¢Q
Is continuous at every irrational in the interval (0, 1) but discontinuous at every rational in
(0,1).

Proof.

Let a be a rational in (0, 1) and suppose that f is continuous at a. If x,, is a sequence of
irrationals which converges to a, then f(xn) - f(a); thatis, f(a) = 0.But f(a) # 0 by
definition. Hence, f is discontinuous at every rational in (0, 1).

Let a be an irrational in (0, 1). We must show that f(x,) = f(a) for every sequence x, € (0,1)

which satisfies x,, = a asn — . We may suppose that x,, € Q. For each n € N, write x,, = Pnin

dn

reduced form. Since f(a) = 0, it suffices to show that q,, = 0 as n — . Suppose to the contrary
that there exist integers n; < n, < --- such that |an| < M < oo for k € N. Since x,, € (0,1), it
follows that the set

E = 1xp, — Pk e
an
Contains only a finite number of points. Hence, the limit of any sequence in E must belong to E,

a contradiction since a is such a limit and is irrational.

To see how counterintuitive Example 3.33 is, try to draw a graph of y = f(x). Strager things can
happen.

3.34 Remark.
The composition of two functions g o f can be nowhere continuous, even though f is
discontinuous only on Q and g is discontinuous at only one point.

Proof.
Let f be the function given in Example 3.33 and set

(1 x+0
g(x)—{o x=0

Clearly,
(9°f)@) = {(1) oo
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Hence, g o f is the Dirichlet function, nowhere continuous by Example 3.32.

In view of Example 3.33 and Remark 3.34, we must be skeptical of proofs which rely exclusively
on geometric intuition. And although we shall use geometric intuition to suggest methods of
proof for many results in subsequent chapters, these suggestions will always be followed by a
careful rigorous proof which contains no fuzzy reasoning based on pictures or sketches no
matter how plausible they seem.
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3.4 Uniform Continuity
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3.35 Definition.
Let E be a nonempty subset of R and f: E — R. Then f is said to be uniformly continuous on E
(notation: f: E — R is uniformly continuous) if and only if for every € > 0 thereisa § > 0 such
that

Ix —al <& and x,a € E imply |f(x)—f(a)| <e.

Notice that the § in Definition 3.35 depends on € and f, but not on a and x. This issue needs to
be addressed when we prove that a given function is uniformly continuous on a specific set (e.g.,
by determining & before a is mentioned).

3.36 Example.
Prove that f(x) = x? is uniformly continuous on the interval (0, 1).

Proof.
Givene > 0,set§ = 2 If x,a € (0,1), then |x + a| < |x| + |a| < 2. Therefore, if x,a € (0,1) and
|x —al < 6, then

lf() - f@)] =|x*—a®|=Ix—allx+al <2|x—a| <25 =€

The definitions of continuity and uniform continuity are very similar. In fact, the only difference is
that for a continuous function, the parameter § may depend on a, whereas for a uniformly
continuous function, § must be chosen independently of a. In particular, every function
uniformly continuous on E is also continuous on E. The following example shows that the
converse of this statement is false unless some restriction is made of E.

3.37 Example.
Show that f(x) = x? is not uniformly continuous on R.

Proof.
Suppose to the contrary that f is uniformly continuous on R. Then there is a § > 0 such that
|x —al < & implies |f(x) - f(a)| < 1forall x,a € R. By the Archimedean Principle, choose n €

N so large that né > 1.Seta=nandx=n+g.Then |x —al < 6 and
2

o)
1>|f(x)—f(a)|=|x2—a2|=n6+7>n6>1.

The contradiction proves that f is not uniformly continuous on R.

3.38 Lemma.
Suppose that E € R and that f: E — R is uniformly continuous. If x,, € E is Cauchy, then f(xn)
is Cauchy.

Proof.
Let € > 0 and choose § > 0 such that (9) holds. Since {xn} is Cauchy, choose N € N such that
n,m = N implies |xn - xm| < 6. Thenn,m = N implies |f(xn) - f(xm)| <e€.

. 1. . 1, . .
Notice that f(x) = ~ is continuous on (0,1) and x,, = —is Cauchy but f(x,) is not. In particualr,
1. . : , . :

~ is continuous but not uniformly continuous on the open interval (0, 1). Notice how the graph

ofy = % corroborates this fact. Indeed, as a gets closer to 0, the value of § gets smaller (compare
61 to &, in Figure 3.4) and hence cannot be chosen independently of a.

Thus on an open interval, continuity and uniform continuity are different, even if the interval is
bounded. The following result shows that this is not the case for closed, bounded intervals. (This
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result is extremely important because uniform continuity is so strong. Indeed, we shall use it
dozens of times before this book is finished.)

3.39 Theorem.
Suppose that [ is a closed, bounded interval. If f: I — R is continuous on I, then f is uniformly
continuous on /.

Proof.
Suppose to the contrary that f is continuous but not uniformly continuous on I. Then there is an

€o > 0 and points x,, y,, € I such that |xn - yn| < %and

|f(xn) - f(Yn)| = €y, n € N.
By the Bolzano-Weierstrass Theorem and the Comparison Theorem, the sequence {xn} has a
subsequence, say x,,, which converges, as k - o, to some x € /. Similarly, the sequence

{ynk}k N has a convergent subsequence, say y,, , which converges, as j — o, to some y € .

€ ]

Since x,, — x asj — oo and f is continuous, it follows from (10) that |f(x) - f(y)| > €,; thatis
]

f(x) # f(y).But |xn - yn| < %for all n € N so Theorem 2.9 (the Squeeze Theorem) implies x =
y. Therefore, f(x) = f(y), a contradiction.

3.40 Theorem.
Suppose that a < b and that f: (a, b) = R. Then f is uniformly continuous on (a, b) if and only if
f can be continuously extended to [a, b]; that is, if and only if there is a continuous function
g:la, b] > R which satisfies

fG)=gx),  x€e(ab).

Proof.
Supp{)se that f is uniformly continuous on (a, b). Let x,, € (a, b) converge to b asn — . Then
{xn} is Cauchy; hence, by Lemma 3.38, so is {f(xn)}. In particular,

g(b) = rlLl_rEO f(xn)
Exists. This value does not change if we use a different sequence to approximate b. Indeed, let
Yn € (a, b) be another sequence which converges to b as n — . Given € > 0, choose § > 0 such
that (9) holds for E = (a, b). Since x,, — y,, = 0, choose N € N so thatn > N implies |x, — y,| <
6. By (9), then, |f(xn) — f(yn)| < e for all n = N. Taking the limit of this inequality as n — oo, we
obtain

[1im () = lim £(3)
For all € > 0. It follows from Theorem 1.9 that

111_{1(}0 f(xn) = 711_11}0 f(yn)-
Thus, g(b) is well defined. A similar argument defines g(a).
Set g(x) = f(x) for x € (a, b). Then g is defined on [a, b], satisfies
(11), and is continuous on [a, b] by the Sequential Characterization of Limits. Thus, f can be
"continuously extended" to g as required.
Conversely, suppose that there is a function g continuous on [a, b] which satisfies (11). By Theorem
3.39, g is uniformly continuous on [a, b]; hence, g is uniformly continuous on (a, b). We conclude
that f is uniformly continuous on (a, b).

<e

Let f be continuous on a bounded, open, nondegenerate interval (a, b). Notice that f is
continuously extendable to [a, b] if and only if the one-sided limits of f exist at a and b. Indeed,
when they exist, we can always define g at a and b to be the values of these limits. In particular, we
can prove that f is uniformly continuous without using €'s and §'s.

3.41 Example.
Prove that f(x) = % is uniformly continuous on (0, 1).

Proof.
Itis clear that f(x) —» 0 as x - 0*. Moreover, by L'Hospotal's Rule (see Theorem 4.27),
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: 1
LSO = =t
X
Hence f is continuously extendable to [0, 1], so by Theorem 3.40, f is uniformly continuous on

(0,1).
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Chapter 4 Differentiability on R
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4.1 The Derivative
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4.1 Definition.
A real function f is said to be differentiable at a point a € R if and only if f is defined on some open
interval I containing a and

fla+h)—f(a)
h

f'(a) = lim

Exists. In this case f'(a) is called the derivative of f at a.

If f is differentiable at each point in a set E, then f" is a function on E. This function is denoted
several ways:

d
f=T-fw-p

When y = f(x), we shall also use the notation Z—z or y' for f'. Higher-order derivatives are
defined recursively; that is, if n € N, then f(n“)(a) = (f(”)) (a), provided these derivatives
exist. Higher-order derivatives are also denoted several ways, including D} f, %, f™ and by

%% and y™ when y = f(x). The second derivatives f ) (respectively, y?) are usually written

as "' (respectively, y'"), and when they exist at some point a, we shall say that f is twice
differentiable at a.

Here are two characterizations of differentiability which we shall use to study derivatives. The
first one, which characterizes the derivative in terms of the "chord function"

F(x) = ]%:_/;(a_) X #a,

4.2 Theorem.

A real function f is differentiable at some point a € R if and only if there exist an open interval [

and a functionF: I — R such thata € I, f is defined on I, F is continuous at a, and
f)=Fx)&x—-a)+ f(a)

Holds for all x € I, in which case F(a) = f'(a).

Proof.

Notice once and for all that for x € I \ {a}, (2) and (3) are equivalent. Suppose that f is

differentiable at a. Then f is defined on some open interval I containing a, and the limit in (1)

exists. Define F on I by (2) if x # a, and by F(a) := f'(a). Then (3) holds for all x € I, and F is

continuous at a by (2) since f'(a) exists.

Conversely, if (3) holds, then (2) holds for all x € I, x # a. Taking the limit of (2) as x — a, bearing

in mind that F is continuous at a, we conclude that F(a) = f'(a).

The second characterization of differentiability, in terms of linear approximations [i.e., how well
f(a + h) — f(a) can be approximated by a straight line through the origin] will be used in
Chapter 11 to define the derivative of a function of several variables.

4.3 Theorem.
A real function f is differentiable at a if and only if there is a function T of the form T (x) = mx
such that
. fla+h)—f(@-TH)

lim =0

h—0 h
Proof.
Suppose that f is differentiable, and set m := f’(a). Then by (1),

f@+)—f@-TH) _fla+h)-fla

- = A —f'(@a)-0

Ash — 0.
Conversely, if (4) holds for T(x) := mx and h # 0, then
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fla+h)—f(a) fla+h)—f(a) —mh
=m-+
h h
fla+h) = f(a)-T()
+ .
h
By (4), the limit of this last expression is m. It follows that —

f(a+h) I@ _, 1 ash - 0; that is, that

f'(a) exists and equals m.

4.4 Theorem.
If f is differentiable at a, then f is continuous at a.

Proof.
Suppose that f is differentiable at a. By Theorem 4.2, there is an open interval I and a function
F, continuous at a, such that f(x) = f(a) + F(x)(x — a) for all x € I. Taking the limit of this last
expression as x — a, we see that

lim f(x) = f(a) + F(a) - 0 = f(a).
In particular, f(x) — f(a) as x — a; that s, f is continuous at a.
Thus any function which fails to be continuous at a cannot be differentiable at a. The following
example shows that the converse of Theorem 4.4 is false.

4.5 Example.
Show that f(x) = |x| is continuous at 0 but not differentiable there.

Proof.
Since x — 0 implies |x| = 0, f is continuous at 0. On the other hand, since |h| = h when h > 0
and |h| = —h when h < 0, we have

tim LSO g i LSO

h—0% h h—0 h
Since a limit exists if and only if its one-sided limits exist and are equal (Theorem 3.14), it
follows that the limit in (1) does not exist when a = 0 and f(x) = |x|. Therefore, f is not

differentiable at 0.

4.6 Definition.
Let I be a nondegenerate interval.
1. Afunction f:I = Ris said to be differentiable on [ if and only if

fI (Cl) = ];_2;1 f_(xi__?

Exists and is finite for every a € I.
2. f is said to be continuously differentiable on I if and only if f;’ exists and is continuous on
I.

4.7 Example.

3
The function f(x) = x2 is differentiable on [0, ) and f'(x) = % for all x € [0, o).
Proof.

By the Power Rule (see Exercise 4.2.7), f'(x) = 3‘2/2 for all x € (0, ). And by definition,
3

h2 —

f'(0) = hm —h—— hm Vvh = 0.
Here is notatlon w1dely used in con]unctlon with Definition 4.6. Let I be a nondegenerate
interval. For each n € N, define the collection of functions C™(I) by

c™(I) = {f: f:I = Rand f™ exists and is continuous on I}.
We shall denote the collection of f which belong to C™(I) for alln € N by C®(I). Notice that C1(I)
is precisely the collection of real functions which are continuously differentiable on I. When
dealing with specific intervals, we shall drop the outer set of parentheses; for example, we shall
write C"[a, b] for C™([a, b]).
By modifying the proof of Theorem 4.4, we can show that if f is differentiable on I, then f is
continuous on I. Thus, C*(I) € C™(I) c C"(I) for all integers m > n > 0.
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The following example shows that not every function which is differentiable on R belongs to
C1(R).

4.8 Example.
The function

F) = x? sin (%) x#0

0 x=0
[s differentiable on R but not continuously differentiable on any interval which contains the
origin.
Proof.
By definition,

1 1 1
! — 1; : —_| = ! — i — | — —
f'(0) = }ll_l‘)r(l) h sin (h) 0 and f'(x) = 2xsin <x> cos (x)
For x # 0. Thus f is differentiable on R but lim,._,, f'(x) does not exist. In particular, f’ is not
continuous on any interval which contains the origin.

4.9 Remark.
f(x) = |x| is differentiable on [0, 1] and on [—1, 0] but not on [—1, 1].

Proof.
Since f(x) = x when x > 0 and f(x) = —x when x < 0, it is clear that f is differentiable on
[—1,0) U (0,1] [with f'(x) = 1 for x > 0 and f'(x) = —1 for x < 0]. By Example 4.5, f is not
differentiable at x = 0. However,

, ~Ih| , Inl
fion (@) = i 77 =1 and fiy,0)(0) = lip 5= 1.

Therefore, f is differentiable on [0, 1] and on [—1, 0].
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4.2 Differentiability Theorems
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4.10 Theorem.
Let f and g be real functions and ¢ € R. If f and g are differentiable at a, then f + g, af, f - g,

and [when g(a) # 0] g are all differentiable at a. In fact,

(f +,g)’(a) =f'(a) + g'(a@),
(af) (@) = af'(a),
(f-9) (@) = g@f'(@) + f(@)g' (),
<f>' _9@f'(@) - f(@g' (@)
=) (a) = . .
g g%(a)

Proof.
The proofs of these rules are similar. We provide the details only for (7). By adding and
subtracting f(a)g(x) in the numerator of the left side of the following expression, we can write
f)gx) — fla)g(a) (f) - f(@) (90 - g9(@)
= gl ==+ f(@) " —————.
xX—a xX—a xX—a
This last expression is a product of functions. Since g is continuous (see Theorem 4.4), it follows
from Definition 4.1 and Theorem 3.8 that

im f(x)g(x) - f(a)g(a) — g(a)f’(a) + f(a)g’(a)

1
ol xX—a
Formula (5) is called the Sum Rule, (6) is sometimes called the Homogeneous Rule, (7) is called the
Product Rule, and (8) is called the Quotient Rule.

4.11 Theorem. [Chain Rule].
Let f and g be real functions. If f is differentiable at a and g is differentiable at f(a), then g o f is
differentiable at a with

(gof) (@ =g (f@)f'(a).
Proof.
By Theorem 4.2, there exist open intervals I and /, and functions F: I — R, continuous at a, and

G:] - R, continuous at f(a), such that F(a) = f'(a), G(g(a)) = g’(f(a)),
f&)=FXxX)(x—a)+ f(a), x €1,

9@) =6 -f@)+g9(f@)  yeJ
Since f is continuous at a, we may assume (by making I smaller if necessary) that f(x) € J for
allx € I.
Fix x € 1. Apply (11) to y = f(x) and (10) to x to write

(g f)) =g(fx) =6(f0) (f(x) = f(@) + g(f(@))
= 6(fC)FE)G —a) + (g f)(@).
Set H(x) = G(f(x))F(x) for x € I.Since F is continuous at a and G is continuous at f(a), it is
clear that H is continuous at a. Moreover,

H(a) = G(f(@)F(a) = g'(f(@)f"(a).
It follows from Theorem 4.2, therefore, that (g ° f)’(a) =g'(f(@)f' ().

And
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4.3 The Mean Value Theorem
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4.12 Lemma. [Rolle's Theorem].
Suppose that a, b € R with a < b.If f is continuous on [a, b], differentiable on (a, b), and if
f(a) = f(b), then f'(c) = 0 for some c € (a, b).

Proof.
By the Extreme Value Theorem, f has a finite maximum M and a finite minimum mon [a,b]. If M =
m, then f is constant on (a, b) and f'(x) = 0 for all x € (a, b).
Suppose that M # m. Since f(a) = f(b), f must assume one of the values M or m at some point
¢ € (a, b). By symmetry, we may suppose that f(c) = M. [That is, if we can prove the theorem
when f(c) = M, then a similar proof establishes the theorem when f(c) = m.] Since M is the
maximum of f on [a, b], we have

fle+h)—f()<0
For all h which satisfy ¢ + h € (a, b). In the case h > 0 this implies
f(C+h})l f(C)SO

)

f'(e) = lim,
And in this case h < 0 this implies

f’(C) — hll)l’(r)l_f(c + h]z_f(c) > 0.

It follows that f'(c) = 0.

Notice once and for all that the proof of Rolle's Theorem proves a well-known result: The extreme
values of a differentiable function on an open interval occur at critical points (i.e., at points where f
is zero).

!

4.13 Remark.
The continuity hypothesis in Rolle's Theorem cannot be relaxed at even one point in [a, b].

Proof.
The function

fo=fy X<

Is continuous on [0, 1), differentiable on (0, 1), and f(0) = f(1) = 0, but f'(x) is never zero.

4.14 Remark.
The differentiability hypothesis in Rolle's Theorem cannot be relaxed at even one pointin (a, b).

Proof.
The function f(x) = |x| is continuous on [—1, 1], differentiable on (—1,1) \ {0}, and f(—1) =
f (1), but f'(x) is never zero.

We shall use Rolle's Theorem to obtain several useful results. The first is a pair of "Mean Value
Theorems."

4.15 Theorem.

Suppose that a,b € Rwitha < b.
1. [Generalized Mean Value Theorem] If f, g are continuous on [a, b] and differentiable on
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(a,b), then there is a ¢ € (a, b) such that
g' @B - f@) = f'(©)(g®) — g(a)).
2. [Mean Value Theorem] If f is continuous on [a, b] and differentiable on (a, b), then there
isac € (a, b) such that

fb) = fla) = f'(c)(b - a).
Proof.

1. Seth(x) = f()(g(b) — (@) — gGI(f (B) — £(@)). Since h'(x) = f'()(g(b) — g(a)) —
9’ ()(f(b) — f(a)), itis clear that h is continuous on [a, b], differentiable on (a, b), and
h(a) = h(b). Thus, by Rolle's Theorem, h’(c) = 0 for some c € (a, b).

2. Set g(x) = x and apply part 1). (For a geometric interpretation of this result, see the
opening paragraph of this section and Figure 4.3.)

The Generalized Mean Value Theorem is also called Cauchy's Mean Value Theorem. It is usually
essential when comparing derivatives of two functions simultaneously, using higher-order
derivatives to approximate functions, and studying certain kinds of generalized derivatives (e.g.,
see Taylor's Formula and 1'Hospital's Rule in the next section, and Remark 14.32).

The Mean Value Theorem is most often used to extract information about f from f' (see, e.g.,
Exercise 4.3.4, 4.3.5, and 4.3.9). Perhaps the best known result of this type is the criterion for
deciding when a differentiable function increases. To prove this result, we begin with the
following nonmenclature.

4.16 Definition.
Let E be a nonempty subsetof Rand f: E — R.
1. f is said to be increasing (respectively, strictly increasing) on E if and only if x;,x, € E
and x; < x, imply f(x;) < f(x,) [respectively, f(x;) < f(x2)].
2. fissaid to be decreasing (respectively, strictly decreasing) on E if and only if x;,x, € E
and x; < x, imply f(xl) > f(xz) [respectively, f(xl) > f(x)].
3. f is said to be monotone (respectively, strictly monotone) on E if and only if f is either

decreasing or increasing (respectively, either strictly decreasing or strictly increasing) on
E.

4.17 Theorem.
Suppose that a, b € R, with a < b, that f is continuous on [a, b], and that f is differentiable on
(a, b).
1. If f'(x) > 0 [respectively, f'(x) < 0] for all x € (a, b), then f is strictly increasing
(respectively, strictly decreasing) on [a, b].
2. If f'(x) = 0forall x € (a,b), then f is constant on [a, b].
3. If g is continuous on [a, b] and differentiable on (a, b), and if f'(x) = g'(x) forall x €
(a, b), then f — g is constant on [a, b].
Proof.
Leta < x; < x, < b. By the Mean Value Theorem, there is a ¢ € (a, b) such that f(xz) -
f(x1) = f'(c)(xy — x1)- Thus, f(x2) > f(x1) when f'(c) > 0and f(x,) < f(x;) when f'(c) <
0. This proves part 1).
To prove part 2), notice that if f' = 0, then by the proof of part 1), f is both increasing and
decreasing, and hence constant on [a, b]. Finally, part 3) follows from part 2) applied to f — g.

Theorem 4.17i is a great result. It makes checking a differentiable function for monotonicity a
routine activity. However, there are many nondifferentiable functions which are monotone. For
example, the greatest integer function,

f(x) =[x] =mn, n<x<n+1ne€lZ,
[s increasing on R but not even continuous, much less differentiable.

How badly can these nondifferentiable, monotone functions behave? The following result shows
that, just like the greatest integer function, any function which is monotone on an interval
always has left and right limits (contrast with Examples 3.31 and 3.32). This is a function
analogue of the Monotone Convergence Theorem.

4.18 Theorem.
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Suppose that f is increasing on [a, b].
1. Ifc € [a,b), then f(c+) exists and f(c) < f(c +).
2. Ifc € (a,b], then f(c—) exists and f(c —) < f(c).

Proof.
By symmetry it suffices to show that f(c—) exists and satisfies f(c —) < f(¢) for any fixed ¢ €
(a,b].SetE = f((a, c)) and s = sup E . Since f is increasing, f(c) is an upper bound of E. Hence,
s is a finite real number which satisfies s < f(c). Given € > 0, choose by the Approximation
Property an x; € (a,c) such thats — e < f(xo) < s. Since f is increasing,

s—e<f(x) <f(x)<s
Forall x, < x < c. Therefore, f(c—) exists and satisfies f(c —) = s < f(c).

We have seen (Example 3.32) that a function can be nowhere continuous (i.e., can have
uncountably many points of discontinuity). How many points of discontinuity can a monotone
function have?

*4.19 Theorem
If f is monotone on an interval I, then f has at most countably many points of discontinuity on I.

Proof.

Without loss of generality, we may suppose that f is increasing. Since the countable union of at
most countable sets is at most countable (Theorem 1.42ii), it suffices to show that the set of
points of discontinuity of f can be written as a countable union of at most countable sets. Since
R is the union of closed intervals [-n,n],n € N, we may suppose that [ is a closed, bounded
interval [a, b].

Let E represent the set of points of discontinuity of f on (a, b). By Theorem 4.18, f(x —) <
f(x) < f(x+) forall x € (a, b). Thus, f is discontinuous at such an x if and only if f(x +) —
f(x =) > 0.1t follows that

E 2131 A],

Where for each j € N, 4; = {x E(@b):f(x+)—f(x—-) = %} . We will complete the proof by

showing that each 4; is finite.
Suppose to the contrary that 4; is infinite for some j,. Set y, = jo (f(b) - f(a)) and observe
that since f is finite valued on /, y, is a finite real number. On the other hand, since 4; is
infinite, then by symmetry we may suppose that there exist x; < x, < -+ in [a, b] such that
f(xx +) — f(xx =) = 1/j for k € N. Since f is monotone, it follows that

n

O =@z Y (Fla+) = F(n=)) 2 5

k=1
Thatis, yo = j, (f(b) - f(a)) = n for all n € N. Taking the limit of this last inequality as n — oo,
we see that y; = +o0o. With this contradiction, the proof of the theorem is complete.

4.20 Example.
Prove that1 + x < e* for all x > 0.

Proof.

Let f(x) = e* — x, and observe that f'(x) = e¥ — 1 > 0 for all x > 0. It follows from Theorem
4.17i that f(x) is strictly increasing on (0, ©). Thus e* —x = f(x) > f(0) = 1 forx > 0.In
particular, e* > x + 1 for x > 0.

4.21 Theorem. [Bernoulli's Inequality].
Let a be a positive real number. If 0 < @ < 1,then (1 + x)* < 1 + ax forall x € [—1, ), and if
a > 1,thenifa > 1,then (14 x)* > 1+ ax forall x € [-1, ).

Proof.

The proofs of these inequalities are similar. We present the details only for the case 0 < a < 1.
Fixx = —1and let f(t) = t%, t € [0, ). Since f'(t) = at*"1, it follows from the Mean Value
Theorem (appliedtoa = 1and b = 1 + x) that
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fA+x)—fQ) = axc* !
For some ¢ between 1 and 1 + x.
Case1l.x > 0.Thenc > 1.Since 0 < @ < 1 implies @ — 1 < 0, it follows that c*~1 <1, hence
xc®1 < x. Therefore, we have by (12) that
A+x)=fA+x0)=fD+axc*<f(D)+ax=1+ax
As required.
Case2.—1 < x <0.Thenc < 1soc%* !> 1.Butsince x < 0, it follows that xc*~! < x as before
and we can repeat (13) to obtain the same conclusion.

*4.22 Example.
n
Prove that the sequence (1 + %) is increasing, asn — oo, and its limit L satisfies 2 < L < 3.

(The limit L turns out to be an irrational number, the natural base e = 2.718281828459 ....)
Proof.

n
The sequence (1 + %) is increasing, since by Bernoulli's Inequality,

1 71%1 1
<1+_.) s<1+——>.
n n+1

To prove that this sequence is bounded above, observe by the Binomial Formula that

(143 =206

Now,

k) \n nk k! T kT 2kT

For all k € N. It follows from Exercise 1.4.4c that

1 1\" =1 1
2=<1+I><<1+E> S1+1+;§E=3_ﬁ__1<3

Forn > 1. Hence, by the Monotone Convergence Theorem, the limit L exists and satisfies 2 <
L <3.

(n)(l)k=n(n—1)...(n—k+1)._1 _1_1

The last result in this section shows that although a differentiable function might not be
continuously differentiable, its derivative does satisfy an intermediate value theorem. (This
result is sometimes called Darboux's Theorem.)

*4.23 Theorem. [Intermediate Value Theorem For Derivatives].
Suppose that f is differentiable on [a, b] with f'(a) # f'(b). If y, is a real number which lies
between f'(a) and f'(b), then there is an x, € (a, b) such that f(x,) = y,.

Strategy: Let F(x) = f(x) — yox. We must find an x4 € (a, b) such that F’(xo) = f’(xo) — Yo =
0. Since local extrema of a differentiable function F occur only where the derivative of F is zero
(e.g., see the proof of Rolle's Theorem), it suffice to show that F has a local extremum at some
Xo € (a,b).

Proof.

Suppose that y, lies between f’(a) and f'(b). By symmetry, we may suppose that f'(a) < y, <
f'(b).Set F(x) = f(x) — yox for x € [a, b], and observe that F is differentiable on [a, b]. Hence,
by the Extreme Value Theorem, F has an absolute minimum, say F(xo), on [a, b]. Now F'(a) =
f'(a) —yy <0,s0F(a+ h) — F(a) < 0 for h > 0 sufficiently small. Hence F(a) is NOT the
absolute minimum of F on [a, b]. Similarly, F (b) is not the absolute minimum of F on [a, b].
Hence, the absolute minimum F(xo) must occur on (a, b); thatis, x, € (a,b) and F’(xo) =0.
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4.4 Taylor's Theorem and L'Hospital's Rule

20184F11822H 6:46

4.24 Theorem. [Taylor's Formula].
Letn € N and let a, b be extended real numbers with a < b. If f: (a, b) = R, and if f ™1 exists
on (a, b), then for each pair of points x, x, € (a, b) there is a number ¢ between x and x, such

that
fe f () n
10 = o)+ 3 L5 )t R e
Proof.
Without loss of generality, suppose that x; < x. Define
— )+l (k)
F©) = T and 600 = 100~ ) - Z L0 oy

k=1
For each t € (a, b), and observe that the theorem will be proved if we can show that thereisa c
between x and x, such that
G(x0) = F(xo) - f™ V(0.
This looks like a job for the Generalized Mean Value Theorem.
To verify that F and G satisfy the hypotheses of the Generalized Mean Value Theorem, notice that

0 (¢ (+1) (¢ ) (¢
(1O ) LSOO OO (e
dt (k - 1)!
Fort € (a,b) and k € N. Telescopmg, we obtain
TR0
6'() = ~-F——— -0
Fort € (a,b).On the other hand, by the Chain Rule
(x—0)"
F'(t) = —— —
n!

For t € R. Thus F and G are differentiable on (x;, x), continuous on [xo,x] and satisfy
G'(t)
F' (t)
By the Generalized Mean Value Theorem, there is a number ¢ € (xg, x) such that
(FG) = F(x0)) 6"(0) = (6(0) = 6 (x0) ) F'(©).
Since F(x) = G(x) = 0 and x # c, it follows that —F(xO)G’(c) = —G(xO)F’(c); that is, G(xo) =
F(xo 15 14

=fM+ @), t#ax

F()

We shall use this result in Chapter 7 to show that most of the functions you've used in calculus
classes before are very nearly polynomials themselves. To lay some ground work for these
results, we introduce some additional notation.

Define 0! = 1 and f©@(x) = f(x), and notice that f(xo) = re (x°) . We shall call

Pfxo() Zf 0)( )

The Taylor Polynomlal of order n generated by f centered at x,. Clearly, for each f € C*(a, b),
Taylor's Formula gives us an estimate of how well Taylor polynomials approxiamte f. In fact,
since Taylor's Formula implies

(n+1)
_ f,xo L (C_) _ n+1
f(x)—PB, (x)lS CES] (x — xo) ,
For some c between x and x, and the fraction (—1—)' gets smaller as n gets larger, we see that

when the derivatives of f are bounded, the higher-order Taylor polynomials approximate f
better than the lower-order ones do.

An Introduction to Analysis Page 59



Let's look at two specific examples to see how this works out in practice.

4.25 Example.
Let f(x) =e*andn € N.
1. Find the Taylor polynomial P, :
2. Provethatifx € [—1,1], then
3
le* — P (x)|_( O
3. Find an n so large that B, approximates e* on [—1, 1] to four decimal places.

=p/°.

Proof.
1. Since f®(x) = e* forallx € Rand k = 0,1, ..., it is clear that f*)(0) = 1 for all k > 0;
that is, that

n xk
@ = )

2. Letc,x € [—1,1]. C_learly, le€| < e' < 3and |x"| < 1foralln € N. Butif ¢ lies between x
|ern+1| 3

and 0, then ¢ € [—1, 1]. Thus it follows from (17) that |e —P, (x)| =D < i

3. To get four-place accuracy, we want |e — P, (x)| .00005. By part 2., this will hold when
D 1)| < 0.00005; that is, when (n + 1)! = 60000. According to my calculator, this occurs

whenn+ 1> 9,sosetn = 8.
4.26 Example.
Let f(x) = sinxandn € N.
1. Find the Taylor polynomial Py, 44 == le;(il

2. Provethatifx € [—1,1], then
1

~ (2n+2)!
3. Find an n so large that P2n+(1 appro)x1mates sinx on [—1, 1] to three decimal places.
Proof.
1. Observe that f(x) = sinx, f'(x) = cosx, f"(x) = —sinx, f®(x) =
— cosx,and f™® (x) = sin x, right back where we started from. Thus it is clear that
@ (x) = (=1)¥ sinx and f@*+VD(x) = (=1)* cosx for k = 0,1, .... It follows that
@ (0) = 0and f(z"“)(O) = (=1)* for k > 0; that is, that

smxo( ) 2( 1)k 2k+1

2n+1 L (2k+ 1)| '

2. Letc,x € [-1,1]. Clearly, f2"*2(c)| < 1and |x2”+2| < 12™*2 = 1 foralln € N. Thus it
follows from (17) that |smx P2n+1(x)|

|sinx P2n+1(x)|

- (2n+2)'
3. Toget three -place accuracy, we want |sm X — P2n+2(x)| .0005. By part 2., this will hold
when ——— < 0.0005; that is, when (2n + 2)! > 2000. According to my calculator, this

(2n +2)'
occurs when 2n + 2 > 7,so setn = 3.

. . : : R 0 : :
This next result is a widely known technique for evaluating limits of the form Jor E Since it

involves using information about derivatives to draw conclusions about the functions
themselves, it should come as no surprise that the proof uses the Meav Value Theorem. (Notice
that our statement is general enough to include one-sided limits and limits at infinity.)

4.27 Theorem. [L'Hospital's Rule].
Let a be an extended real number and I be an open interval which either contains a or has a as
an endpoint. Suppose that f and g are differentiable on I \ {a} and that g(x) # 0 # g'(x) for all
x € I \ {a}. Suppose further that

A= lim f(x) = lim g (x)

X€El X€EI
Is either 0 or oo. If
"(x
B := lim f,( —)
x% g' (%)
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Exists as an extended real number, then
- f) L ()
lim = lim —.
2l g(0)  raag ()
Proof

Let x;, € I be distinct points with x;, = a as k = oo such that either x, < aorx; > aforallk €
N. By the Sequential Characterization of Limits and by the characterization of two-sided limits

f(xx)

in terms of one-sided limits, it suffices to show that —=— e ) —> Bask — oo,

We suppose for simplicity that B € R. (For the cases B = oo, see Exercise 4.4.10.) Notice once
and for all, since g’ is never zero on I, that by Mean Value Theorem the differences g(x) — g(y)
are never zero for x,y € I, x # y, provided either x,y > a or x, y < a. Hence, we can divide by
these differences at will.

Case 1.

A =0anda € R.Extend f and g to I U {a} by f(a) := 0 =: g(a). By hypothesis, f and g are
continuous on I U {a} and differentiable on I \ {a}. Hence by the Generalized Mean Value
Theorem, there is a ¢, between x;, and y = a such that

F(a) = 1) _ (o)
9(x)—9()  9'(c)
Since f (y) = g(y) = (, it follows that
fla) _ fla) =) _ f'ew)
9(x)  9(u)—g(y) g'(c)
Let k — oo. Since ¢y, lies between x;, and a, ¢, also converges to a as k — co. Hence hypothesis

and(ﬁllmplyfg k%—)Bask—)OO

Case 2.

A = +ooand a € R. We suppose by symmetry that A = +o0. For each k,n € N, apply the
Generalized Mean Value Theorem to choose a ¢y ,, between x;, and x;, such that (20) holds for x,
in place of y and ¢y ,, in place of ci. Thus

fo)100) _flon) 1) L (46, ) L)

9(xn) - 9(xn) - 9(xn) - 9(xn) "(ckn)
— <1 _ g(xk)>f’(ck,n)_
g(xn) g’(ck,n) ’

That is,
f(xn) f(xk) g(xk) f(ckn)_l_f(ckn)

g(xn) g(xn) g(xn) g (Ck n) g (Ck n)
Since A = oo, itis clear that —— — 0 as n — oo, and since ¢y , lies between x; and x,, itis also

( n)
clear that ¢y ,, = a, as k,n — o. Thus (22) and hypothesis should imply that fE ”g ~0—-0+B=
B for large n and k. Specifically, let 0 < € < 1. Since ¢y, = a as k,n — oo, choose an N, so large
thatn = N, implies £IECN°'n§ B < . Since g(xn) — 00, choose an N > N, such that f(( ))
g CNO,n Xn
and the product (( NO)) . f,ECNO'ng are both less than g for alln > N. It follows from (22) that for
Xn g CNo,n
anyn =N,
f(xn) f (xNo) g (XNO) f (CNO,n) f' (CNO,n)
- —B| < + + —B|<e
9Gn) 1= [90) | T [96n) g (ann)| |0 (enam)
Hence, f% ";—>Basn—>oo

Case 3.
a = too. We suppose by symmetry that a = +o0. Choose ¢ > 0 such that I > (¢, »). For each

y €E ( ) set ¢(y) f( ) and 1/)(y) =g G) . Notice that by the Chain Rule,
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vO) (B (Z1) (L)
yJ\ »* y
_1 1@ _ ')
Thus, for x = " € (¢, ), T Vo)
and v satisfy the hypotheses of Cases 1or2fora =0and [ = (0, %) . In particular,
ffe o o'(y) . ely) . f)
im —— = lim <= lim ——% = lim ——.
e g () y=oryr(y)  yoory(y)  xoeg(x)
L'Hospital Rule can be used to compare the relative rates of growth of two functions. For
example, the next result shows that as x — o, e* converges to oo much faster than x? does.

i ) ()

Since x - oo ifand only if y = % — 0%, it follows that ¢

4.28 Example.

2
Prove that lim,_, z—x =0.

Proof.

2 (e
Since the limit on—x and ex—x are of the form —, we apply I'Hospital's Rule twice to verify
lim = 1 lim — = 0
xomeX | xhmeX  xbmer
For each subsequent application of 'Hospital's Rule, it is important to check that the hypotheses

still hold. For example,

lim x2/(x% +sinx) = lim=————=0# 1 = lim —
x—0 x—02Xx + cos x x-02 —sinx
Notice that the middle limit is not of the form 0/0.
L'Hospital Rule can be used to evaluate limits of the form 0 - co = —0(—o0).

4.29 Example.
Find lim,_,4, xlog x .

Solution.
By writing x as 1/(1/x), we see that the limit in question is of the form g Hence, by L'Hospital's

Rule,

_ . logx _ 1/x
lim xlogx = lim —— =
x—0+

x-0+ 1/x o —1/x2 =0.

The next two examples show that L'Hospital's Rule can also be used to evaluate limits of the
form 1% and 0°.

4.30 Example.
Find L = lim,_,o, (1 + 3x)%/*.

Solution.
If the limit exists, then by a law of logarithms and the fact that log x is continuous, we have
log L = lim, ¢4 loglzﬁ. Thus it follows from I'Hospital's Rule and the Chain Rule that
3
log(1 + 3x 1+ 3x
& ) = lim 1t+3x 3.

IOgL = lim — =
x—-0+ X x—-0+

In particular, the limit exists by I'Hospital's Rule and L = e!°8% = ¢3,

4.31 Example.
Find L = limx_,1+(log x)l_x .

Solution.

If the limit L > 0 exists, then log L = lim,_,; (1 — x) log(log x) is of the form O - co. Hence, by
I'Hospital's Rule,
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oo L = i loglogx y 1/(xlogx) o —2(1-x) 0
B E /A —x) A1/(I—x)2 x51 1+logx
Therefore, the limit exists by I'Hospital's Rule and L = e° = 1.

An Introduction to Analysis Page 63



4.5 Inverse Function Theorems

2018%E11829H 11:21

4.32 Theorem.

Let I be a nondegenerate interval and suppose that f: I — Ris 1-1. If f is continuous on /, then

J == f(I) is an interval, f is strictly monotone on I, and f ! is continuous and strictly monotone
on]J.

Proof.
Since f is 1-1 from I onto J, Theorem 1.30 implies that f ~1 exists and takes ] onto I.
To show that J is an interval, since I contains at least two points, so does J. Let ¢,d € ] with ¢ <
d. By the definition of an interval, it suffices to prove that every y, € (c, d) belongs to J. Since f
takes I onto J, there exist points a, b € I such that f(a) = c and f(b) = d. Since y, lies between
f(a) and f(b), we can use the Intermediate Value Theorem to choose an x, between a and b
such that y; = f(x,). Since x, € I and f takes I onto J, yo = f(xo) must belong to /, as required.
Suppose that f is not strictly monotone on /. Then there exist points a, b,c € I such thata < ¢ <
b but f(c) does not lie between f(a) and f(b). Since f is 1-1, f(a) # f(b), so by symmetry we
may suppose that f(a) < f(b). Since f(c) does not lie between f(a) and f (b), it follows that
either f(c) < f(a) < f(b) or f(a) < f(b) < f(c). Hence by the Intermediate Value Theorem,
there is an x; € (a, b) such that either f(xl) = f(a) or f(xl) = f(b). Since f is 1-1, we conclude
that either x; = a or x; = b, both contradictions. Therefore, f is strictly monotone on I.
By symmetry, suppose that f is strictly increasing on I. To prove that ! is strictly increasing
on J, suppose to the contrary that there exist y;, y, € J such that y; < y, but f‘l(yl) =
f~Y(y;). Then x; == f~1(y1) and x, = f~1(y, ) satisfy x; = x, and x4, x, € I. Since f is strictly
increasing on I, it follows that y; = f(xl) = f(xz) = y,, a contradiction. Thus, f 1 is strictly
increasing on J.
It remains to prove that f~! is continuous from the left and from the right at each y, € J. We
will provide the details for continuity from the right. To this end, suppose that f ! is not
continuous from the right at some y, € J; that is, that there exist y,, € J such thaty, > y,, y, =
Yo as n — oo, but that

() = a0 > f*(¥o)
For some number a,. Since [ is an interval and f ! takes J onto I, it follows that a, belongs to I
and there is a by € ] such that ag = f (b ). Substituting this into (23), we see that f~(y;,) =
f1(bo) > (o). Since f is strictly increasing, we conclude that y, > by > y,; thatis, y,
cannot converge to y,, a contradiction. A small argument verifies that f ! is continuous from
the left at each y, € J. Thus f~1is continuous on J.

4.33 Theorem. [Inverse Function Theorem].

Let I be an open interval and f: I — R be 1-1 and continuous. If b = f(a) for some a € I and if
1

f'(a) exists and is nonzero, then f 1 is differentiable at b and (f_l)’(b) =
Proof.

By Theorem 4.32, f is strictly monotone, say strictly increasing on I, and f ~! exists and is both
continuous and strictly increasing on the range f(I). Moreover, since a := f~*(b) € I and I is
open, we can choose ¢,d € Rsuchthata € (¢,d) c I.

Let E, be the range of f on (c, d); thatis, E = f((c,d)). By Theorem 4.32, E, must be an
interval. Since f is strictly increasing, it follows that E, = (f(c), f(d)). Hence, we can choose

§ > 0sosmall that 0 < |h| < § implies b + h € E,. In particular, f (b + h) is defined for all
0<|h| <6.

Fix such an h and set x = f~1(b + h). Observe that f(x) — f(a) = b + h— b = h.Since f1is
continuous, x — a if and only if h — 0. Therefore, by direct substitution, we conclude that

i L OED ) L x—a 1
h=0 3 T f) —f@ @
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This theorem is usually presented in elementary calculus texts in a form more easily
remembered:

Ify = f(x) and x = f~1(y), then
dx 1
dy ~ dy/dx
Notice that, by using this formula, we do not need to solve explicitly for f ! to be able to
compute (1)’

4.34 Example.
If f(x) = x5+ x*+x3 + x% + x + 1, prove that f 1 (x) exists at x = 6 and find a value for

(F71) (6).

Solution.

Observe that f(1) = 6 and f'(x) > 0 for all x > 0. Thus f is strictly increasing on (0, ), and hence
1-1 there.

Let] = (0,2),a =1,and b = 6. Then f(a) = b and f'(a) = 15 # 0. Hence, it follows from the

i 1)) = —- =1
Inverse Function Theorem that (f~1) (6) = ONETE
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Chapter 5 Integrability on R

2018%F12815H 22:37
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5.1 The Riemann Integral

2018%F12815H 22:37

5.1 Definition.
Leta,b € Rwitha < b.
1. A partition of the interval [a, b] is set of points P = {x¢, x, ..., x, } such that
a=xyg<x; < <xp,=>h.
2. The norm of a partition P = {xo, X1, e ,xn} is the number

||P|| = max
1<jsn

3. Arefinement of a partition P = {xo, X1y eens xn} is a partition Q of [a, b] which satisfies Q 2
P. In this case we say that Q is finer than P.
5.2 Example. [The Dyadic Partition].
Prove that foreachn € N, P, = {2]_n :j=01,.., 2”} is a partition of the interval [0,1], and B,, is
finer than P, whenm > n.

Xj - Xj_1| .

Proof.
Fixn € N.If x; = Zj—n, then 0 = xy < x; < -+ < xyn = 1. Thus, B, is a partition of [0,1]. Letm > n

S
andsetp =m —n.If0 < j < 2%, then 2]—n = jzimand 0 < j2P < 2™.Thus B, is finer than B,.

5.3 Definition.

Leta,b € Rwitha < b,letP = {xo, X1y eee) xn} be a partition of the interval [a, b], set Ax; :== x; —

xj_q1 forj =1,2,...,n, and suppose that f: [a, b] — R is bounded.
1. The upper Riemann sum of f over P is the number

U(f,P) = Z M;(f)Ax;,
Where =
Mj(f) = supf([xj_l,x]-]) = sup f(t).

tE€[xj_1,X;

2. The lower Riemann sum of f over P is the number

L(F.P) = ) my(f)ax;,
Where =

mj(f) = inff([xj_l,xj]) = inf f(t).

tE[x]-_l,xj]
(Note: Since we assumed that f is bounded, the numbers M;(f) and m;(f) exist and are finite.)

5.4 Remark.
If g:N — R, then
n

D (gt + D= g) = gn + 1) - g(m)
k=m

Foralln = minN.

Proof.
The proof is by induction on n. The formula holds for n = m. If it holds for some n — 1 = m, then

Z (gtk+1) —g) =(g) —gm) + (gtn+1) —g(n)) = gln + 1) — g(m).
k=m

We shall refer to this algebraic identity by saying the sum telescopes to g(n + 1) — g(m). In

An Introduction to Analysis Page 67



particular, if P = {xg, x4, ..., X, } is a partition of [a, b], the sum Yj=14x; telescopes to x, — xo =
b—a.

Before we define what it means for a function to be integrable, we make several elementary
observations concerning upper and lower sums.

5.5 Remark.
If f(x) = a is constant on [a, b], then
U(f,P) =L(f,P) = a(b—a)
For all partitions P of [a, b].
Proof.
Since Mj(f) = mj(f) = q for all j, the sum U(f, P) and L(f, P) telescopes to a(b — a)

5.6 Remark.

L(f, P) < U(f, P) for all partitions P and all bounded functions f.
Proof.

By definition, m;(f) < M;(f) for all j.

The next result shows that as the partitions get finer, the upper and lower Riemann sums get
nearer each other.

5.7 Remark.
If P is any partition of [a, b] and Q is a refinement of P, then

L(f.P) < L(f.Q) < U(f.Q) < U(f.P).
Proof.
LetP = {xo, X1y ey xn} be a partition of [a, b]. Since Q is finer than P, Q can be obtained from P in
a finite number of steps by adding one point at a time. Hence it suffices to prove the inequalities
above for the special case Q = {c} U P for some c € (a, b). Moreover, by symmetry and Remark
5.6, we need only show U(f, Q) < U(f, P).
We may suppose that ¢ € P. Hence, there is a unique index j, such that x;_; < ¢ < x; . By
definition, it is clear that

U(f,Q) = U(f.P) = MD (c = x;,_1) + M© (x;, — c) - MAx;,,
Where

M® =supf ([xjo_l,c]), M@ =supf ([C, xjo]), and

M =supf ([xjo—l'xjo])-

By the Monotone Property of Suprema, M® and M are both less than or equal to M. Therefore,
U(f,Q) = U(f.P) < M(c—2x5,_1) + M (x;, - c) — MAx;, = 0.

5.8 Remark.

If P and Q are any partitions of [a, b], then

L(f,P) < U(f,Q).
Proof.
Since P U Q is a refinement of P and Q, it follows from Remark 5.7 that

L(f,P) < L(f,PuQ) < U(f,PuQ) <U(f.Q)

For any pair of partitions P, Q, whether Q is a refinement of P or not.

5.9 Definition.
Let a,b € Rwith a < b. A function f: [a, b] » R is said to be (Riemann) integrable on [a, b] if
and only if f is bounded on [a, b], and for every € > 0 there is a partition P of [a, b] such that

U(f,P) - L(f,P) <e.

Notice that this definition makes sense whether or not f is nonnegative. The connection
between nonnegative functions and area was only a convenient vehicle to motivate Definition
5.9. Also notice that, by Remark 5.6, U(f, P) — L(f, P) = |U(f, P) - L(f, P)| for all partitions P.
Hence, U(f,P) - L(f, P) < € is equivalent to |U(f,P) — L(f,P)| <eE€.

This section provides a good illustration of how mathematics works. The connection between
area and integration leads directly to Definition 5.9. This definition between area and
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integration leads directly to Definition 5.9. This definition, however, is not easy to apply in
concrete situations. Thus, we search for conditions which imply integrability and are easy to
apply. In view of Figure 5.2, it seems reasonable that a function is integrable if its graph does not
jump around too much (so that it can be covered by thinner and thinner rectangles). Since the
graph of a continuous function does not jump at all, we are led to the following simple criterion
that is sufficient (but not necessary) for integrability.

5.10 Theorem.
Suppose that a, b € R with a < b.If f is continuous on the interval [a, b], then f is integrable on
[a, b].

Proof.

Let € > 0. Since f is uniformly continuous on [a, b], choose § > 0 such that
€
|x —y| < & implies |f(x) —f(y)| < Tt

LetP = {xo, X1, e ,xn} be any partition of [a, b] which satisfies ||P|| < §.Fixan index j and
notice, by the Extreme Value Theorem, that there are points x,,, and x), in [xj_l, xj] such that

f(em) = m;(f) and f(xw) = M;(f).

Since ||P|| < &, we also have |xM - xm| < 8. Hence by (1), Mj(f) - mj(f) < b—i;. In particular,

n n
€
U(F.P) = L(FP) = D (M(F) = my(f)) Any < 7— >y = e
j=1 j=1
(The last step comes from telescoping.)

5.11 Example.
The Dirichlet function

ﬂw={$§§%

Is not Riemann integrable on [0,1].

Proof.

Clearly, f is bounded on [0,1]. By Theorem 1.18 and Exercise 1.3.3 (Density of Rationals and
Irrationals), the supremum of f over any nondegenerate interval is 1, and the infimum of f over
any nondegenerate interval is 0. Therefore, U(f, P) — L(f, P) =1 — 0 =1 for any partition P of
the interval [0,1]; that is, f is not integrable on [0,1].

5.12 Example.
The function

00
fo=1{ |,
2

IA

x <

N

1
Is integrable on [0,1].

IA
IA

X

Proof.
Let € > 0. Choose 0 < x; < 0.5 < x, < 1 such that x, — x; < €. The set
P := {O, X1, X3, 1}
Is a partition of [0,1]. Since my (f) = 0 = My(f), mz(f) =0 < 1 = My(f),and m3(f) =1 =
M3 (f), it is easy to see that U(f, P) - L(f, P) = x, — x; < €. Therefore, f is integrable on [0,1].

We have defined integrability, but not the value of the integral. We remedy this situation by
using the Riemann sums U(f, P) and L(f, P) to define upper and lower integrals.

5.13 Definition.

Leta,b € Rwitha < b, and f: [a, b] = R be bounded.
1. The upper integral of f on [a, b] is the number
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b
) f f(x) dx = inf{U(f, P): P is a partition of [a, b]}.
a
2. The lower integral of f on [a, b] is the number

b
(L) f f(x) dx == sup{L(f, P): P is a partition of [a, b]}

3. Ifthe upper and lower integrals of f on [a, b] are equal, we define the integral of f on
[a, b] to be the common value

b b b
[reaxr=w | reax=w [ reax

This defines integration over nondegenerate intervals. Motivated by the interpretation of
integration as area, we define the integral of any bounded function f on [a, a] to be zero; that is,

faf(x) dx = 0.

Although a bounded function might not be integrable (see Example 5.11 above), the following
result shows that the upper and lower integrals of a bounded function always exist.

5.14 Remark.
If f:[a, b] - Ris bounded, then its upper and lower integrals exist and are finite, and satisfy

b b
(wfﬂwmswﬁjumL

Proof.
By Remark 5.8, L(f, P) < U(f, Q) for all partitions P and Q of [a, b]. Taking the supremum of
this inequality over all partitions P of [a, b], we have

b
@fﬂmwswwm)

That is, the lower integral exists and is finite. Taking the infimum of this last inequality over all
partitions Q of [a, b], we conclude that the upper integral is also finite and greater than or equal
to the lower integral.

5.15 Theorem.

Leta,b € Rwitha < b, and f: [a, b] - R be bounded. Then f is integrable on [a, b] if and only if

b b
(wfﬂwM=wﬁJWMx

Proof.
Suppose that f is integrable. Let € > 0 and choose a partition P of [a, b] such that

U(f,P)—L(f,P) <e.
By definition, (U) f; f(x)dx < U(f, P) and the opposite inequality holds for the lower integral
and the lower sum L(f, P). Therefore, it follows from Remark 5.14 and (3) that

b b b b
(U)J.f(x)dx-—(L)J.f(x)dx ::(U>j'f(x)dx-—(L)j'f(x)dx

<U(f,P)-L(f,P)<e
Since it is valid for all € > 0, (2) holds as promised.
Conversely, suppose that (2) holds. Let € > 0 and choose, by the Approximation Property,
partitions P; and P, of [a, b] such that

b €
U(f,p) < (U)f f(x)dx +5

And
b €
L(f,P,) > (L)f f@)dx =3,

Set P = P; U P,. Since P is a refinement of both P; and P,, it follows from Remark 5.7, the
choices of P; and P,, and (2) that
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U(f,P)—L(f,P) <U(f,P) — L(f, P,)
b € b €
< (U)f f(x)dx+z—(L)f f(x)dx+z= €

Since the integral has been defined only on intervals [a, b], we have tacitly assumed that a < b.
We shall use the convention

fbaf(x)dx = —fabf(x)dx

To extend the integral to the case a > b. In particular, if f(x) is integrable and nonpositive on
[a, b], then the area of the region bounded by the curves y = f(x),y = 0,x = a,and x = b is

given by fba f(x) dx.

5.16 Theorem.
If f(x) = a is constant on [a, b], then

b
f f(x)dx = a(b — a).

Proof.
By Theorem 5.10, f is integrable on [a, b]. Hence, it follows from Theorem 5.15 and Remark 5.5 that

b b
ff(x)dx=(U)ff(x)dx=ing(f,P)=a(b—a).
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5.2 Riemann Sums

201941 H11H 9:22

5.17 Definition.
Let f: [a, b] - R.
1. A Riemann sum of f with respect to a partition P = {xy, ..., X, } of [a, b] generated by

samples t; € [xj 1,xj] isasum

s(f.p.t) Zf Ax;.

2. The Riemann sums off are said to converge to I(f) as ||P|| — 0 ifand only if given € > 0
there is a partition P. of [a, b] such that

P = {xg, ., o) 2 P implies IS(f, Pt;)—1(f)| < e

For all choices of tj € [xj 1,xj],j = 1,2, ..., n.In this case we shall use the notation

(f)— 11m S(f = lim Zf Ax; .

[1P1]—04

5.18 Theorem.
Let a, b € R with a < b, and suppose that f: [a, b] = R. Then f is Riemann integrable on [a, b] if
and only if

I(f) = lim Zf Ax;

|P1[-0
Exists, in which case I(f) = fa f(x) dx.
Proof.

Suppose that f is integrable on [a, b] and that € > 0. By the Approximation Property, there is a
partition P. of [a, b] such that

b b
L(f,PE)>j f(x)dx —e and U(f,PE)<f flx)dx +e.

LetP = {xo,xl, . xn} 2 P.. Then (4) holds with P in place of P.. But m](f) < f( )M M;(f)

for any choice of tj € [xj_l,xj]. Hence,
b n b
f f(x)dx —e <L(f,P) < zf(tj)ij <U(f,P) < f f)dx+e
a i=1 a

That is, —e < Z;l_lf (yj) Ax; — fbf(x) dx < e. We conclude that

n

Z ij ff(x)dx <e

For all partitions P 2 P. and all choices of tj € [xj_l, xj],j =12,..,n

Conversely, suppose that the Riemann sums of f converge to I(f). Let € > 0 and choose a
partition P = {x,x1, ..., xn} of [a, b] such that

zf ) ax; — 1(f) <—

For all ch01ces of tj € [xj_l, xj]. Since f is bounded on [a, b] (see Exercise 5.2.11), use the

Approximation Property to choose t;, u; € [xj_l,xj] such that f (tj) —f (uj) > M; (f) —
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u(f,P) - L(f,P) = Z (M) = my (1)) A%,
< Z (f (tj) —-f (uj)) Axj + %e_—a)-;ij

=1
< zf(tj)ij—I(f) + I(f)—;f(uj)ij +T;_7);ij

<?+§:E

Therefore, f in integrable on [a, b].

5.19 Theorem. [Linear Property].
If f, g are integrable on [a, b] and a € R, then f + g and af are integrable on [a, b] are integrable
on [a, b]. In fact,

b b b

J. (f(x)+g(x)) dxzf f(x) dx+f g(x)dx
And a a a

f (af(x))dx = af f(x)dx.

Proof.
Let € > 0 and choose P, such that for any partition P = {xg, x1, ..., X} 2 P. of [a, b] and any

choice of tj € [xj_l, xj], we have

Ef(tj) Ax; — fbf(x) dx| < %
j=1 “

n

Eg (tj) Ax; — fbg(x) dx <§

j=1
By the Triangle Inequality,

Ef ij+2 Ax] ff(x)dx—jg(x)dx <e€

For any choice of tj € [xj_l, xj]. Hence, (6) follows directly from Theorem 5.18.

And

To prove (7), we may suppose that ¢ # 0. Choose P such thatif P = {xo, s xn} is finer than F,

then
n b
jZlf(tj)ij - fa flx)dx| < |—Z—|

For any choice of t; € [xj_l, xj] . Multiplying this inequality by |a|, we obtain

n

Eaf(tj)ij—afbf(x)dx < Ialize

a
< ]

For any choice of t; € [xj_l, xj]. We conclude by Theorem 5.18 that (7) holds.

5.20 Theorem.
If f is integrable on [a, b], then f is integrable on each subinterval [c, d] of [a, b]. Moreover,

b c b
ff(x)dx=ff(x)dx+ff(x)dx
Forall ¢ € (a,b).
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Proof.
We may suppose that a < b. Let € > 0 and choose a partition P of [a, b] such that

U(f,P) - L(f,P) <e.
Let P = P U {c}and P, = P’ n[a,c]. Since P, is a partition of [a, c] and P’ is a refinement of P,
we have by (9) that

U(f,P.) —L(f,P,) <U(f,P")—L(f,P") < U(f,P) - L(f,P) <€

Therefore, f is integrable on [a, c]. A similar argument proves that f is integrable on any
subinterval [c, d] of [a, b].
To verify (8), suppose that P is any partition of [a, b]. Let P, = P U {c}, P, = Py N [a,c],and P, =
Py N [c,b]. Then Py = P; U P, and by definition

c b c b

> (U)f flx)dx + (U)f f(x)dx = f f(x)dx +f f(x)dx
a c a Cc

(This last equality follows from the fact that f is integrable on both [a, c¢] and [c, b].) Taking the
infimum of

c b
U(f,P)zf f(x) dx+f f(x) dx

Over all partitions P of [a, b], we obtain

Lbf(x) dx = (U) fabf(x) dx > facf(x) dx + fcbf(x) dx.

A similar argument using lower integrals shows that

fbf(X) dx < fcf(X) dx + fbf(x) dx.

Using the conventions

fabf(x)dx=—fbaf(x)dx and faaf(x)dxzo

[t is easy to see that (8) holds whether or not c lies between a and b, provided f is integrable on
the union of these intervals (see Exercise 5.2.4).

5.21 Theorem. [Comparison Theorem for Integrals].
If f, g are integrable on [a, b] and f(x) < g(x) for all x € [a, b], then

b b
f f(x)dx Sf g(x) dx
a a
In particular, if m < f(x) < M for x € [a, b], then

b
m(b — a) Sf fx)dx < M(b — a).

Proof.
Let P be a partition of [a, b]. By hypothesis, M;(f) < M;(g) whence U(f,P) < U(g, P). It follows
that

b b
f £(x) dx = (U)f f(x)dx < U(g,P)

For all partitions P of [a, b]. Taking the infimum of this inequality over all partitions P of [a, b],
we obtain

b b
f f(x)dx Sf g(x)dx
a a
If m < f(x) < M, them (by what we just proved and by Theorem 5.16)
b b b
m(b —a) =f mdxsf f(x)dxsf Mdx = M(b — a).
a a a

We shall use the following result nearly every time we need to estimate an integral.

5.22 Theorem.
If f is (Riemann) integrable on [a, b], then |f| is integrable on [a, b] and
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fabf(x) dx| < Lb|f(x)| dx.

Proof.
Let P = {xg, x4, ..., X, } be a partition of [a, b]. We claim that

M;(If1) = m(I£]) < M;(F) = my(F)
Holds for j = 1,2, ...,n.Indeed, let x,y € [xj_l, xj]. If f(x), f (y) have the same sign, say both are
nonnegative, then

FC| = lF )] = F @) = £ (¥) < M;(f) —my(f).
If f(x), f (y) have opposite signs, say f(x) = 0 = f(y), then m; (f) < 0 and hence,

FC| =[] = F@) + £ (y) < M;(f) + 0 < M;(f) = my (f).
Thus in either case, |f(x)| < M; (f) - m; () + |f(»)| Taking the supremum of this last
inequality for x € [xj_l, xj] and then the infimumas y € [xj_l, xj], we see that (10) holds, as
promised.
Let € > 0 and choose a partition P of [a, b] such that U(f, P) — L(f, P) < €. Since (10) implies
U(|f|,P) — L(|f|, P) < U(f,P) — L(f, P), it follows that

u(lf].P) - L(If|P) <e.
Thus |f| is integrable on [a, b]. Since —|f(x)| <flx)< |f(x)| holds for any x € [a, b], we
conclude by Theorem 5.21 that

b b b
—f |f(x)|dx£j f(x)dej |f ()] dx

5.23 Corollary.
If f and g are (Riemann) integrable on [a, b], then so is fg.

Proof.
Suppose for a moment that the square of any integrable function is integrable. Then, by hypothesis,

f?,g% and (f + g)2 are integrable on [a, b]. Since

2 2 2
P 2f g

It follows from Theorem 5.19 that fg is integrable on [a, b].
It remains to prove that f2 is integrable on [a, b]. Let P be a partition of [a, b]. Since Mj(fz) =

(M]-(|f|))2 and m;(f?) = (mj(|f|))z, it is clear thazt
m;(£2) = m;(£2) = (M (1) = (my(I11))
= (m;(1£1) +mi(I£D) (M (1D =y (1£1)

< 2M (m;(|f[) = my (7))
Where M = sup|f|([a, b]); that s, |f (x)| < M for all x € [a, b]. Multiplying the displayed
inequality by Ax; and summing over j = 1,2, ...,n, we have
u(r?,P) - L(r2 P) < 2m (u(If],P) - L(If]. P)).

Hence, it follows from Theorem 5.22 that f?2 is integrable on [a, b].

5.24 Theorem. [First Mean Value Theorem For Integrals].

Suppose that f and g are integrable on [a, b] with g(x) = 0 for all x € [a, b]. If
m = inf f[a,b] and M = sup f[a, b],

Then there is a number ¢ € [m, M] such that

b b
f fx)g(x)dx = cf g(x)dx.

In particular, if f is continuous on [a, b], then there is an x, € [a, b] which satisfies
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b b
f F)g(x) dx = f(xo) f g(x) dx.

Proof.
Since g = 0 on [a. b], Theorem 5.21 implies

b b b
mf g(x) def f(x)g(x)dx SMJ- g(x)dx.

If f: g(x) dx = 0, then f; f(x)g(x) dx = 0 and there is nothing to prove.
Otherwise, set

o Juf g G) dx

b
J, 9(x) dx
And note that ¢ € [m, M]. If f is continuous, then (by the Intermediate Value Theorem) we can
choose x, € [a, b] such that f(x,) = c.

5.25 Example.
Find F(x) = [ f(t) dt if

(1 x=20
f(x)_{—l x<0’

Solution.

By Theorem 5.16,

F(x) = =
= | fyde={
Hence, F(x) = |x|.

x x=0
—x x<0

Notice in Example 5.25 that the integral F of f is continuous even though f itself is not. The
following result shows that this is a general principle.

5.26 Theorem.
If f is (Riemann) integrable on [a, b], then F(x) = f;f(t) dt exists and is continuous on [a, b].

Proof.

By Theorem 5.20, F(x) exists for all x € [a, b]. To prove that F is continuous on [a, b], it suffices to
show that F(x +) = F(x) forall x € [a,b) and F(x —) = F(x) for all x € (a, b]. Fix xy € [a, b).
By definition, f is bounded on [a, b]. Thus, choose M € R such that |f(t)| < M forallt € [a,b].
Lete > 0andsetd = 1\—3 If0 < x —xy < 6, then by Theorem 5.22,

IF () = F(xo)| = jf(t)dt sf F(O)] dt < Mx — xo| < e.

Hence, F(xo +) = F(xo). A similar argument shows that F(xo —) = F(xo) forall x, € (a,b].

5.27 Theorem. [Second Mean Value Theorem For Integrals].

Suppose that f, g are integrable on [a, b], that g is nonnegative on [a, b], and that m, M are real
numbers which satisfy m < inf f ([a, b]) and M > sup f([a, b]) . Then there is an ¢ € [a, b] such
that

b c b
[ 9@ ax=m [ geyax+m [ geyax

In particular, if f is also nonnegative on [a, b], then there is an ¢ € [a, b] which satisfies

b b
[ Fegax=m [ gwax

Proof.
The second statement follows from the first since we may use m = 0 when f = 0. To prove the
first statement, set
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X b
F(x)=mf g(t)dt+Mf gt)dt

For x € [a, b], and observe by Theorem 5.26 that F is continuous on [a, b]. Since g is
nonnegative, we also have mg(t) < f(t)g(t) < Mg(t) for all t € [a, b]. Hence, it follows from
the Comparison Theorem (Theorem 5.21) that

b b b
F(b) = mf gt)dt < f f(gt)dt < Mf g(t) dt = F(a).

Since F is continuous, we conclude by the Intermediate Value Theorem that there is an ¢ € [a, b]
such that

b
F(c) = f F(Og(0) dt.
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5.3 The Fundamental Theorem of Calculus

201942 82H 14:48

5.28 Theorem. [Fundamental Theorem of Calculus].
Let [a, b] be nondegenerate and suppose that f:[a, b] - R.

1. If f is continuous on [a, b] and F(x) = f(ff(t) dt, then F € C'[a, b] and
d X
[ rwa=rw=rw

For each x € [a, b].
2. If f is differentiable on [a, b] and f" is integrable on [a, b], then

[ rod=rw-r@

For each x € [a, b].

Proof.
1. Forx € [a,b],setF(x) = f(ff(t) dt. By symmetry, it suffices to show that iff(xo +) =
f(xo) for some x, € [a, b), then
i F(xo + h) — F(xo)
hll)r(r)1+ h - f(xo)
(see Definition 4.6). Let € > 0 and choose a § > 0 such that x; <t < x4 + § implies
|f(t) — f(x0)| < €. Fix 0 < h < §. Notice that by Theorem 5.20,

X0+h

F(xo+h) —F(x) = f f(e)dt
And that by Theorem 5.16,
1 xXo+h
fl) =53]  flrw)ee
Xo

Therefore,
F h)—F 1 [Xoth
(0 + i)l (0) _ ry) = ELO (£ - f(xo)) .

Since 0 < h < §, it follows from Theorem 5.22 and the choice of § that
F(xg+h)—-F(x 1 [Xoth
( 0 ) ( 0) =ﬁf |(f(t)—f(x0))|dtSe.
X0

h = f(x)
This verifies (11) and the proof of part 1) is complete.

2. We may suppose that x = b. Let € > 0. Since f' is integrable, choose a partition P =
{x0,%1, ..., %} of [a, b] such that

Zf i) Ax; — ff(t)dt <e€

For any choice of points t; € [xj_l, xj] . Use the Mean Value Theorem to choose points t; €

[xj_l,xj] such that f (xj) —f (xj_l) =f' (t) Ax;. It follows by telescoping that

i( le ff(t)dt <e.

j=1

b
£(b) - f(a) - f (0 dt

5.29 Remark.
The hypotheses of the Fundamental Theorem of Calculus cannot be relaxed.

Proof.
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1. Define f on [—1,1] by

=71 530
Then f is integrable on [—1,1], but F(x) := fflf(x) dx = |x| — 1is not differentiable at
x=0.
2. Define f on [0,1] by f(x) :== x?sin (;15) when x # 0 and f(0) = 0. Then f is differentiable
on [0,1], but

"(x) = 2xsi ! 2 ! #0
fx—xsmx2 xcosxz.x

Is not even bounded on (0,1], much less integrable on [0,1].

By the Fundamental Theorem of Calculus, integration is the inverse of differentiation in the
following sense. If f' is integrable, then

b
[ rwar=r| =r®-r@.
In particclular,

b xa+1 b
f x%dx = ——
a a

a
For each a = 0, and for each a < 0, provided @ # —1 and [a, b] is a subset of (0, ) (see

Exercises 4.2.3 and 5.3.7). This result is sometimes called the Power Rule.

5.30 Examples.
1. Find [ (3x — 2)% dx.

2. Find f[2(1 + sinx) dx.
Solution.
1. Since (3x — 2)% = 9x? — 12x + 4, we have by the Power Rule that

1 1
f (3x —2)?dx = 3x3 — 6x2% + 4x|0 = 1.
0

2. Since (cosx)’ = —sin x, we have by the Fundamental Theorem of Calculus that
Vs
7 . z om
(1+smx)dx=x—cosx| =-+1
0 o 2

5.31 Theorem. [Integration by Parts].
Suppose that f, g are differentiable on [a, b] with f’, g’ integrable on [a, b]. Then

b b
f f'(x)g(x)dx = f(b)g(b) — f(a)g(a) —f f()g' (x) dx.
This rulcé is sometimes abbreviated as ‘

fudv=uv—fvdu.

Where it is understood that if w = h(x) for some differentiable function h, then the Leibnizian
differential dw is defined by dw = h'(x)dx.

Integration by parts can be used to reduce the exponent n on an expression of the form (ax +
b)"™f(x) when f is integrable.

5.32 Example.

T
Find 2 x sin x dx.

Solution.
Let u = x and dv = sinx dx. Then du = dx and v = — cos x. Hence, by parts,
n T T T[
2 > 2 _ >
xsmxdx=—xcosx| — | (—cosx)dx =sinx|” = 1.
0 0 0 0
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5.33 Example.
Find f13 log x dx.

Solution.
Letu = logx and dv = dx. Then du = g;f and v = x. Hence, by parts

3 3 3
f logxdxleogx| —f dx = 3log3 — 2.
1 1)

5.34 Theorem. [Change of Variables].

Let ¢ be continuously differentiable on a closed, nondegenerate interval [a, b]. If
¢’ is nonzero on [a, b],

And if
f isintegrable on [c, d] := ¢[a, b],

Then f o ¢ - |¢'| is integrable on [a, b], and

a b
ff(t)dt=f f(d() - |¢' ()] dx.

Strategy: By the Mean Value Theorem, hypothesis (12) implies that ¢ is 1-1 on [a, b]. Hence by
Theorem 4.32, ¢ is strictly monotone on [a, b] and [c, d] := ¢[a, b] is a closed interval.

Suppose that ¢ is strictly increasing on [a, b]; that is, |¢)’| = ¢ and [c,d] = [q,’)(a), q’)(b)]. By
Theorem 4.32, ¢! is increasing on [c,d]. Thus if P = {to, ty, ., tn} is a partition of [c, d] and

Xj = ¢‘1 (tj), then P = {xo, X1y ey xn} is a partition of [a, b]. A Riemann sum of the right side of
(14) looks like

S(f oh- |¢'|’P,s] Zf( s] ) |q5 (s,)|At
On the other hand, a typical term of a Riemann sum of the left side of (14) looks like
£ () oz = £ () (@ () = ¢ (5-4)).
Since ¢, hence ¢, is continuous, we can use the Intermediate Value Theorem to choose sj €

[xj_l, xj] such thatu; = ¢ (sj), and the Mean Value Theorem to choose ¢; € [xj_l, xj] such that
[0) (xj) - ¢ (xj 1) = ¢>’ (Cj) Ax;. It follows that a Riemann sum the left side of (14) looks like

s(f.Pw) Ef( ) () Ax;.

The only difference between this last sum and (15) is that s; has been replaced by ¢;. Since ¢j and s;
both belong to the interval [xj_l, xj] and ¢' is continuous, making this replacement should not

change S much if the norm of P is small enough. Hence, a Riemann sum of the left side of (14) is
approximately equal to a Riemann sum of the right side of (14). This means the integrals in (14)
should be equal. Here are the details.

Case 1. Suppose that ¢ is strictly increasing on [a, b]. Let € > 0. Since f is bounded, choose M €
(0, ) such that |f(x)| < M for all x € [c,d]. Since ¢’ is uniformly continuous on [a, b], choose
6 > 0 such that
€
[ (51) = 9" ()] < Wb
That is,

7 (6(5))(# (5) -9 ()] < 5=

For all s, ¢; € [a, b] with |sj — cj| < 6.

Next, use the Inverse Function Theorem to verify that ¢~ is continuously differentiable on [c, d].
Thus there is an 7 > 0 such that if s, ¢ € [c,d] and |s — ¢| <7, then |[¢~2(s) — p~2(c)| < 6.
Finally, since f is integrable on [c, d] [¢>(a) ¢>(b)] choose a partition P = {to, ty, ...,tn} of [¢,d]
such that ||P|| < 7 and
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$(b)
s (f, P, uj) . F(6) dt

Holds for any choice of u; € [tj_l, tj] .

<e
2

Setx; = ¢‘1(tj) and observe (by the choice of ) that P := {xo, ,xn} is a partition of [a, b]
which satisfies ||I3|| < 6.

Lets; € [x]-_l, xj], setu; = ¢ (sj), and apply the Mean Value Theorem to choose ¢; € [xj_l, xj]
such that ¢ (xj) —¢ (xj_l) = ¢’ (cj) Ax;. Then, by the choices of ¢, u;, and t;, we have u; €
[tj_l, tj] and

£(9(5)) ¢ (6) a5 = £ () (# (5) = ¢ (5-1)) = £ () (5 - 5-4).

Hence, it follows from (16) and (17) that

Zf (¢ (s,-)) ®' (s]-) Ax; — :(l)))f(t) de) = Zf (¢ (Sf)) ("5’ (Sf) —9¢' (Cf)) Ax;
j=1 a =
+ ;f (uj) (tj - tj—1) - (::Z)f(t) dt

n

<" EA +ic
2(b—a)_1xf 2S¢
J:

We obtained this estimate for the fixed partition P of [a, b], but the same steps also verify this
estimate for any partition finer than P. We conclude by Theorem 5.18 that (f o d)) . |¢’| is
integrable on [a, b] and (14) Holds.

Case 2.
¢ is strictly decreasing on [a, b]. Repeat the proof in case 1. The only changes are P =
{¢72(tn), -, ¢ 1(to)} and |¢'| = —¢'. Thus the Mean Value Theorem implies that

¢ (5-1) =0 (1) = 9" (6) (-1 — ) = | (5))| &

Estimating the Riemann sums as above, we again conclude that

a b
[ = [ #(609) [o'0) ax.

The proof of Theorem 5.34 also establishes the following more familiar form of the Change of
Variables Formula: If ¢ is C* on [a, b], if ¢' is never zero on [a, b], and if f is integrable on
¢la, b], then

¢(b) b
| r@de= | rlpo)e e dx
¢(a) a

The difficult part of Theorem 5.34 was verifying that f o ¢ - |¢'| is integrable on [a, b] when f is

integrable on [c, d]. If we assume that f is continuous, the proof is a lot easier.

5.35 Theorem. [Change of Variables for Continuous Integrands].
If ¢ is continuously differentiable on a closed, nondegenerate interval [a, b] and f is continuous
on ¢([a, b)), then

¢(b) b
() dt = f F($00)¢'(x) dx
¢(a) a
Proof.

Set
G(x) = f f(e@®)d'(Odt,  x€labl, and

Fw=[ f@®dt,  uep(ab),
$@)

An Introduction to Analysis Page 81



And observe that if m is the infimum of ¢([a, b]), then F(u) = frzf(t) dt — f:;(a) f(t)dt. It

follows from the Fundamental Theorem of Calculus that G'(x) = f(¢(x))¢’(x) and F'(u) =
f(u). Hence, by the Chain Rule,

d
—(6e - F(p@)) =0
For all x € [a, b]. It follows from Theorem 4.17ii that G (x) — F((;b(x)) is constant on [a, b].

Evaluation at x = a shows that this constant is zero. Thus G (x) = F(qb (x)) forall x € [a, b],in
particular, when x = b.

These Change of Variables Formulas can be remembered as a substitution if we use the
Leibnizian differentials introduced above: u = ¢ (x) implies du = ¢'(x)dx.

5.36 Example.
Suppose that f is an unknown function which is nonnegative and continuous on [2,5]. If data are

collected that can be interpreted as fzs f(x) dx = 3, find an upper bound for the integral

2
I= fl f(x? + 1) dx.

Solution.
Let u = x% + 1. Then du = 2x dx. Unlike textbook-style problems, we do not have a du term
already in I. However, since x € [1,2] implies x = 1, and since f is nonnegative, it is clear that
f(x?2+1) < 3}#1) Therefore,
2 12 15 3
I=f f(x?+1)dx S—f 2xf(x? +1)dx =—f fwdu=~.
1 2 1 2 2 2
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5.4 Improper Riemann Integration

201942 83H 15:35

5.37 Remark.
If f is integrable on [a, b], then

b d
fa fG)dx = lim <dli>r1£1—fc f(x) dx).

Proof.
By Theorem 5.26,

F(x) :f f(t)de

Is continuous on [a, b]. Thus

b
f fG)dx = F(b) - F(a) = Jim ( lim (F(d) - F(©)))
a
= Cl_lgl_‘_ (dhm f f(x) dx)

This leads to the following generalization of the Riemann integral.
5.38 Definition.
Let (a, b) be a nonempty, open (possibly unbounded) interval and f: (a, b) - R.

1. fissaid to be locally integrable on (a, b) if and only if f is integrable on each closed

subinterval [c, d] of (a, b).
2. f issaid to be improperly integrable on (a, b) if and only if f is locally integrable on (a, b)

and
b a
| reax= 1m (dljgl_ [ e dx)

Exists and is finite. This limit is called the improper (Riemann) integral of f over (a, b).

5.39 Remark.
The order of the limits in (18) does not matter. In particular, if the limit in (18) exists, then

b d
fa f)dx = lim (Cli%l+ fc f(x) dx).

Proof.
Let x, € (a, b) be fixed. By Theorem 5.20 and 3.8,

Cl_l}lgl_'_ (dhm f f(x) dx) = 11m (f flx)dx + 11m f f(x) dx)

C§%1+ f f(x)dx + dl_i)rlr}_ f f(x)dx

d
il (JL‘&L J, 7o dx) -

Thus we shall use the notation

d
Clll}l_l_f f(x)dx
d-b-"¢

To represent the limit in (18). If the integral is not improper at one of the endpoints - for

example, if f is Riemann integrable on closed subintervals of (a, b] - we shall say that f is
improperly integrable on (a, b] and simplify the notation even further by writing
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Lbf(x) dx = cl—i>r(£l+ j;bf(x) dx .

The following example shows that an improperly integrable function need not be bounded.

5.40 Example.
Show that f(x) = \/% is improperly integrable on (0,1].

Solution.
By definition,

1 . 1 .
'L ﬁdx = allf&_ j ﬁdx = all)r(1)1+(2 —-2ya) =2

5.41 Example.
Show that f(x) = x—lz is improperly integrable on [1, ).

Solution.
By definition,
®q L | _ 1

5.42 Theorem.
If £, g are improperly integrable on (a,b) and @, B € R, then af + Bg is improperly integrable on
(a,b) and

b b b
f (af(x) +ﬁg(x)) dx = af f(x) dx+ﬁf g(x)dx.

Proof.
By Theorem 5.19 (the Linear Property for Riemann Integrals),

d d d
j (af (x) + Bg(x)) dx = aj f(x)dx + ,B-f g(x)dx
c c c
Forall a < ¢ < d < b. Taking the limitas ¢ —» a + and d — b — finishes the proof.

5.43 Theorem. [Comparison Theorem for Improper Integrals].
Suppose that f, g are locally integrable on (a, b).If 0 < f(x) < g(x) for x € (a,b),and g is
improperly integrable on (a, b), then f is improperly integrable on (a, b) and

fbf(x) dx < fbg(x) dx.

Proof.

Fix c € (a,b).Let F(d) = fcdf(x) dx and G(d) = fcd g(x) dx for d € [c, b). By the Comparison
Theorem for Integrals, F(d) < G(d). Since f > 0, the function F is increasing on [c, b]; hence
F (b —) exists (see Theorem 4.18). Thus, by definition, f is improperly integrable on (c, b) and

b b
[fewar=ro- <60 = [ gwar

A similar argument works for the case ¢ = a +.

5.44 Example.
Prove that f(x) = S—]\/%C is improperly integrable on (0,1].

Proof.
Since f is continuous on (0,1], f is locally integrable there as well. Since f is nonnegative on

(0,1],itis clear that 0 < f(x) = |[——= M _2on (0,1]. Since this last function is improperly

V3| TS Vx
integrable on (0,1] by Example 5.40, it follows from the Comparison Test that f(x) is

sin x
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improperly integrable on (0,1].

5.45 Example.

Prove that f(x) = l\j_i_: is improperly integrable on [1, o).
X

Proof.

Since f is continuous on (0, ), f is integrable on [1, C] for any C € [1, «). By Exercise 4.4.6,
1
3

. 1 1 . . .
there is a constant C > 1 such that0 < f(x) = 2B <X = s for x = C. Since this last function

Ve <%
is improperly integrable on [1, o) by Example 5.41, it follows from the Comparison Theorem
that f(x) is improperly integrable on [1, o).

5.46 Remark.
If f is bounded and locally integrable on (a, b) and |g| is improperly integrable on (a, b), then
|fg| is improperly integrable on (a, b).

Proof.
LetM = supxe(a,b)|f(x)|. Then 0 < |f(x)g(x)| < M|g(x)| for all x € (a, b). Hence, by Theorem
5.43, |fg| is improperly integrable on (a, b).

5.47 Definition.
Let (a, b) be a nonempty, open interval and f: (a, b) - R.
1. f is said to be absolutely integrable on (a, b) if and only if f is locally integrable and |f| is
improperly integrable on (a, b).
2. f is said to be conditionally integrable on (a, b) if and only if f is improperly integrable but
not absolutely integrable on (a, b).

5.48 Theorem.
If f is absolutely integrable on (a, b), then f is improperly integrable on (a, b) and

fabf(x) dx| < fab|f(x)| dx.

Proof.
Since 0 < |f(x)| +f(x) < 2|f(x)|, we have by Theorem 5.43 that |f| + f is improperly
integrable on [a, b]. Hence, by Theorem 5.42,so is f = (|f| + f) — |f|. Moreover,

fcdf(x) dx| < fcd|f(x)|dx

For every a < ¢ < d < b. We finish the proof by taking the limit of this last inequality as ¢ —» a +
andd - b —.

The converse of Theorem 5.48, however, is false.

5.49 Example.
Prove that the function %ic is conditionally integrable on [1, o).

Proof.
Integrating by parts, we have
4 sin x cosx |4 dcosx
—dx = — | = —5dx
1 X x Iy )] x

= cos(1) —

cosd fdcosx
d 1

Since ;15 is absolutely integrable on [1, ©), it follows from Remark 5.46 that Cc: X

— is absolutely
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integrable on [1, ©). Therefore, %C is improperly integrable on [1, ©) and
“sinx “cosx
f ——dx = cos(1) —f —dx.
1 X 1 X

To show that %‘ is not absolutely integrable on [1, ), notice that

n
f””lsinxld >2j"” |sinx|d
= dx = —dx
1 x = k- X
n

1
= Z — | sinx | dx
4 KT ) (k- 1)m

n 1 n n+11
ZEZZJR ;dx=fz ;dx=log(n+1)—log2—>oo

k=2 k=2
Asn — oo, it follows from the Squeeze Theorem that
] T |sin x|
lim - ‘
n-ow J, X

X = 00,

Thus, Si—zic is not absolutely integrable on [1, o).
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*5.5 Functions of Bounded Variation

201942 86H 17:47

Place Holder
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*5.6 Convex Functions

201942 86H 17:48

Place Holder
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Chapter 6 Infinite Series of Real Numbers

201942 86H 17:48
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6.1 Introduction

201942 86H 17:49

6.1 Definition.
Let S = Y=, ai be an infinite series with terms ay.
1. Foreachn € N, the partial sum of S of order n is defined by
n

Sn :=Zak.

k=1
2. Sissaid to converge if and only if its sequence of partial sums {sn} converges to some s €
R as n — oo; that is, if and only if for every € > 0 there isan N € N such thatn > N implies
|sn — s| < €. In this case we shall write
[oe]

k=1
And call s the sum, or value, of the series }.;°_; ay .

3. Sissaid to diverge if and only if its sequence of partial sums {sn} does not converge as n — oo.
When s, diverges to 4o as n — oo, we shall also write
[ee]

Soee

k=1

6.2 Example.
Prove that Y5, 27F = 1.

Proof.
By induction, we can show that the partial sums s, = Z;}:lf,; satisfy s, = 1 — 27" forn € N. Thus

Sp = lasn — oo,

6.3 Example.
Prove that Y5, (—1)* diverges.

Proof.
The partial sums s, = Yr_,(—1)* satisfy
o = {—1 if n is odd
n 0 ifniseven
The s, does not converge as n — oo.

6.4 Example. [The Harmonic Series].
Prove that the sequence % converges but the series Zf{‘;l% diverges to +oo.

Proof.
The sequence % converges to zero (by Example 2.2i). On the other hand, by the Comparison
Theorem for Integrals,

_i1>zn:fk+11d —fnﬂld — log(n + 1)
m=) T2 : xx—1 - dx =log(n :
k=1 k=1

We conclude that s, - c0oasn — oo.

This example shows that the terms of a divergent series may converge. In particular, a series
does not converge just because its terms converge. On the other hand, the following result
shows that a series cannot converge if its terms do not converge to zero.
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6.5 Theorem. [Divergence Test].
Let {ak}keN be a sequence of real numbers. If a;, does not converge to zero, then the series

Yr=1 ai diverges.

Proof.

Suppose to the contrary that }.;_; a, converges to some s € R. By definition, the sequence of
partial sums s, = Y.}_; a, converges to s as n — . Therefore, ay = s —sx_1 > s—s =0as
k — oo, a contradiction.

6.6 Theorem. [Telescopic Series].
If {ak} is a convergent real sequence, then

z(ak - ak_l) =aq, — I}l_l)‘glo ag.

k=1
Proof.
By telescoping, we have

n
Sn = Z(ak - ak+1) =041 — An+1-
k=1

Hence, s, = a; — lim,_, a; asn — co.

6.7 Theorem. [Geometric Series].
Suppose that x € R, that N € {0,1, ...}, and that 0° is interpreted to be 1. Then the series
Yy x* converges if and only if |x| < 1, in which case

[00)

N
Z k=2
1—x
k=N
In particular,
k
X% = —
Dak=—, <1
k=0
Proof.

If |x| > 1, then Y7 x* diverges by the Divergence Test. If |x| < 1, then set s, = Y7_, x* and
observe by telescoping that
1=x)sp =0 —x)(x+x%+-+x")

=x+x2+ o+ a"—x?—x3 - xM =y
Hence,
X ,H
Sp=——————
" 1l-x 1-x

n+1

For all n € N. Since x — 0asn — oo forall |[x| < 1 (see Example 2.20), we conclude that s,, —

X
——asn — o,

1-x
For general N, we may suppose that |x| < 1 and x # 0. Hence,
n n—-N+1
Z:xk=x’\’+---+xn=x""1 Z x¥.
k=N k=1
Hence, it follows from Definition 6.1 and what we've already proved that
oo n n—-N+1
XN
Exk= lim x* = lim xN-1 Z xk = ——,
n—-oo n—-oo 1—x
k=N k=N k=1

6.8 Theorem. [The Cauchy Criterion].
Let {ak} be a real sequence. Then the infinite series Y-, a, converges if and only if for every
€ > 0 thereisan N € N such that

m
m=n =N imply zak <e.
k=n
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Proof.
Let s,, represent the sequence of partial sums of Y-, a, and set s, = 0. By Cauchy's Theorem
(Theorem 2.29), s,, converges if and only if given € > 0 thereisan N € N such thatm,n > N

imply |sm - sn_1| < €. Since

m
Sm — Sn-1 = Z Ay

k=n
For all integers m > n > 1, the proof is complete.

6.9 Corollary.
Let {ak} be a real sequence. Then the infinite series Y-, a; converges if and only if given € > 0
there is an N € N such that

[ee)

n > N implies 2 ag| <e.

k=n

6.10 Theorem.
Let {ak} and {bk} be real sequences. If Y.}, a, and Y.;- b, are convergent series, then
[o2] o o

Z(ak+bk)=2ak+2bk
k=1 k=1 k=1
d

An
Z(aak) =a z ay
k=1 k=1
Forany a € R.
Proof.

Both identities are corollaries of Theorem 2.12; we provide the details only for the first identity.
Let s, represent the partial sums of ).}, a; and t,, represent the partial sums of }.;°_, b. Since
real addition is commutative, we have

n
Z(ak+bk) —s, +t, neN
k=1

Taking_the limit of this identity as n — oo, we conclude by Theorem 2.12 that

Z(ak+bk)=%§§osn+%mtn=2ak+2bk.
k=1 k=1

k=1
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6.2 Series with Nonnegative Terms

20198F2H13H 21:35

6.11 Theorem.
Suppose that a;, = 0 for large k. Then Y}, a; converges if and only if its sequence of partial
sums {sn} is bounded; that is, if and only if there exists a finite number M > 0 such that

n
Eak < M foralln € N.
k=1

Proof.

Sets, = Yp=q ap forn € N.If 337, a; converges, then s, converges as n — oo. Since every
convergent sequence is bounded (Theorem 2.8), Y., a; has bounded partial sums.
Conversely, suppose that |s,| < M for n € N. Recall from Section 2.1 that a; > 0 for large k

means that there is an N € N. Recall from Section 2.1 that a;, > 0 for large k means that there is
an N € N such that a; = 0 for k = N. It follows that s, is an increasing sequence whenn > N.
Hence by the Monotone Convergence Theorem (Theorem 2.19), s,, converges.

6.12 Theorem. [Integral Test].
Suppose that f:[1,00) — R s positive and decreasing on [1, ©). Then )7, f (k) converges if
and only if f is improperly integrable on [1, ©); that is, if and only if

f:of(x) dx < oo,

Proof.
Lets, = Y}i-,f(k)andt, = fln f(x) dx for n € N. Since f is decreasing, f is locally integrable

on [1, o) (see Exercise 5.1.8) and f(k + 1) < f(x) < f(k) for all x € [k, k + 1]. Hence, by the

Comparison Theorem for Integrals,
k+1

fle+1) < fk fG0) dx < £(k)
For k € N. Summing over k = 1, ...,n — 1, we obtain
n n n-1
= fW =Y fE < [ f@dr=ta Y [0 = 50— f()
= 1 =
Foralln = N.In p:rt?cular, =
f(n) < fk)—1 f(x)dx < f(1) forn € N.
IAEN!

By (3) it is clear that {sn} is bounded if and only if {tn} is. Since f(x) = 0 implies that both s,, and
t,, are increasing sequences, it follows from the Monotone Convergence Theorem that s,
converges if and only if ¢,, converges, asn — oo.

6.13 Corollary. [p-Series Test].
The series

1
D
k=1

Converges if and only if p > 1.

Proof.
Ifp =1orp <0, the series diverges. If p > 0 and p # 1, set f(x) = x~P and observe that
f'(x) = —p7P~1 < 0forall x € [1,). Hence, f is nonnegative and decreasing on [1, ). Since
Cdx . xt-p " . nt=P -1
fl xP nl—l;rc}o]__—; - nglolo_1$'
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Has a finite limit if and only if 1 — p < 0, it follows from the Integral Test that (4) converges if
and only p > 1.

6.14 Theorem. [Comparison Test].
Suppose that 0 < a;, < by, for large k.
1. If Y5 by < oo, then Y )2, a; < 0.
2. If Y2, a; = oo, then Y5, b, = oo.

Proof.

By hypothesis, choose N € N so large that 0 < a;, < by fork > N.Sets, = Y-, arand t, =
Yr=1br,mE€N.Then0 <s, —sy <t, —ty foralln = N.Since N is fixed, it follows that s,, is
bounded when t,, is, and t, is unbounded when s, is. Apply Theorem 6.11 and the proof of the
theorem is complete.

6.15 Example.
Determine whether the series

o 3k |logk
K2tk k
k=1

Converges or diverges.

Solution.

The kth term of this series can be written by using three factors:
1 3k logk
kk+1 k

The factor ff—l is dominated by 3. Since log k < Vk for large k, the factor /lo—ik satisfies

logk< \/E-_ 1
PR kY-

For large k. Therefore, the terms of (5) are dominated by —35. Since Y5, is converges by the p-
k% k%
Series Test, it follows from the Comparison Test that (5) converges.

6.16 Theorem. [Limit Comparison Test].
Suppose that a; = 0, that by, > 0 for large k, and that L := lim,,_,, % exists as an extended real
number.

1. If0 < L < oo, then Y-, a; converges if and only if )}, b; converges.

2. IfL = 0 and };-, by converges, then Y-, a, converges.

3. If L = oo and Y37, by diverges, then Y;’-; a; diverges.

Proof.
1. If L is finite and nonzero, then there isan N € N such that
L 3L
Ebk < ak < —2— bk
For k = N. Hence, part 1 follows immediately from the Comparison Test and Theorem

6.10. Similar arguments establish parts 2. and 3. - see Exercise 6.2.6.

6.17 Example.
Let a; - 0 as k - o. Prove that }.;_; sin|ak| converges if and only ifZ,‘f=1|ak| converges.

Proof.
By L'Hospital's Rule,
sin|ak| . sinx
k—o |ak|_ N x—-0+ _x_ B

Hence, by the Limit Comparison Test, Y;"-, sin|ak| converges if and only ifZ,‘f:l|ak| converges.
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6.3 Absolute Convergence

201982H17H 1:55

6.18 Definition.
Let S = Y2 ak
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