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1.1 Introduction
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Postulate 1. [Field Axioms]

                                                                                           
             

Closure Properties.
   and    belong to  

Associative Properties.
               and                

Commutative Properties.
       and        

Distributive Law.
               

Existence of the Additive Identity.
There is a unique element    such that      for all    .

Existence of the Multiplicative Identity.
There is a unique element    such that    and      for all    .

Existence of Additive Inverses.
For every    there is a unique element     such that 
        

Existence of Multiplicative Inverses.
For every          there is a unique element      such that

         

Postulate 2. [Order Axioms].

There is a relation  on    that has the following properties:

Trichotomy Property.
Given       one and only one of the following statements holds:

         or    

Transitive Property.
For         

   and    imply    

The Additive Property.
For        ,

     and    imply         

The Multiplicative Properties.
For        

   and    imply      
And 

   and    imply      .

By    we shall mean     By    and    we shall mean    or    . By      we 
shall mean    and    . In particular,      makes no sense at all. 

The real number system  contains certain special subsets: 
The set of natural numbers 
         
Obtained by beginning with 1 and successively adding 1s to form 2           and so 

1.2 Ordered Field Axioms1.
2018年8月15日 16:43
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Obtained by beginning with 1 and successively adding 1s to form 2           and so 
on;

The set of integers
                  
(Zahlen is German for number);

The set of rationals (or fractions or quotients)

   
 

 
                 

And the set of irrationals
        

Equality in  is defined by 
 

 
   

 

 
                             

Recall that each of the sets       and  is a proper subset of the next; that is 

       

1.1 Remark
We will assume that the sets of  and  satisfy the following properties.

If      , then          and   belong to  .1.

If    , then    if and only if     2.

There is no    that satisfies       3.
1.2 Example
If    , prove that 

   implies     
If particular,        

Proof. Suppose that     By the Trichotomy Property, either    or     
           Multiply both sides of this inequality by  , using the First Multiplicative 
Property. We obtain           . Since (by (2)),      we conclude that     .
Case 2.    . Multiply both sides of this inequality by  . Since    , it follows from the 
Second Multiplicative Property that              This proves that     when   
 .
Since     it follows that        Adding   to both sides of this inequality, we 
conclude that              

1.3 Example
If    , prove that 

     implies       and    implies     .
Proof. Suppose that       Multiply both sides of this inequality by  using the First 
Multiplicative Property. We obtain                In particular,       .

On the other hand, if    , then    by Example 1.2 and the Transitive Property. 
Multiplying    by  , we conclude that             

1.4 Definition.
The absolute value of a number    is the number

     
          
        

1.5 Remark
The absolute value is multiplicative; that is            for all      

Proof. We consider four cases.
Case 1.    or     Then      so by definition,              .
Case 2.    and    . By the First Multiplicative Property,         . Hence by definition, 
              .
Case 3.    and    , or    and    . By symmetry, we may suppose that    and    . 
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Case 3.    and    , or    and    . By symmetry, we may suppose that    and    . 
(That is, if we can prove it for    and     then by reversing the roles of  and   we can prove 
it for    and     )
By the Second Multiplicative Property,       Hence by Definition 1.4,(2), and commutativity.

                                          

Case 4.    and    . By the Second Multiplicative Property,      Hence by Definition 1.4
                                 .

1.6 Theorem. [FUNDAMENTAL THEOREM OF ABSOLUTE VALUES]

                                                

Proof. Suppose first that      . Multiplying by   , we also have         
Case 1.     By Definition 1.4,       Thus, by hypothesis, 
            
Case 2.    . By Definition 1.4,        Thus by hypothesis,
             
This proves that       in either case.

Conversely, if        then    and     . Multiplying the second inequality by   , 
we have     . Consequently,        if    , and         if    .

1.7 Theorem. The absolute value satisfies the following three properties.
[POSITIVE DEFINITE] For all          with      if and only if    .1.
[SYMMETRIC] For all      ,            .2.
[TRIANGLE INEQUALITIES] For all      ,3.

             and                

Proof.
If    , then         If    , then by Definition 1.4 and the Second Multiplicative 
Property,                Thus      for all     

1.

If       then by definition        when    and         when    . Thus 
     implies that    . Conversely,      by definition. 
By Remark 1.5,                      .2.
To prove the first inequality, notice that        holds for any     Thus Theorem 1.6 
implies           and           . Adding these inequalities (see Exercises 1.2.1), 
we obtain

3.

                      
Hence by Theorem 1.6 Again,              .
To prove the second inequality, apply the first inequality to        . We obtain
                                       
By reversing the roles of  and  and applying part ii), we also obtain
                   
Multiplying this last inequality by   and combining it with the preceding one verifies
                    

We conclude by Theorem 1.6 that                

Notice once and for all that this last inequality implies that              for all      . 
We will use this inequality several times.

1.8 Example.

Prove that if       , then         .

Proof. By hypothesis,       Hence by the triangle inequality and Remark 1.5,

                     

1.9 Theorem.
Let        .

     for all    if and only if    .1.
     for all    if and only if    .2.
     for all    if and only    3.

Proof.
Suppose to the contrary that      for all    but    . Set         and 
observe that       . Hence by the Trichotomy Property,     cannot be greater than 

1.
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observe that       . Hence by the Trichotomy Property,     cannot be greater than 
 . This contradicts the hypothesis for     . Thus    . 
Conversely, suppose that    and    is given. Either    or    . If    , then 
           by the Additive and Transitive Properties. If    , then      
by Additive Property. Thus      for all    in either case. This completes the proof 
of part 1.
Suppose that      for all    . By the Second Multiplicative Property, this is 
equivalent to        , hence by part 1, equivalent to      . Multiplying this 
inequality by   , we conclude that    .

2.

Suppose that          for all    . By part 1, this is equivalent to       Since it is 
always the case  that      , we conclude by the Trichotomy Property that      . 
Therefore,    by the Theorem 1.7i

3.

Let  and  be real numbers. A closed interval is a set of the form 

                  
                
                 
        .

And an open interval is a set of the form

                 
                
                 
        .

By an interval we mean a closed interval, an open interval, or a set of the form

                   Or 
                 

Notice, then, that when     the intervals                   and      correspond to line 
segments on the real line, but when    , t     “i t  v l ”      ll t    mpty   t.

An interval I is said to be bounded if and only if it has the form                    or      for some 
        , in which case the numbers    will be called the endpoints of  . All other 
intervals will be called unbounded. An interval with endpoints    is called degenerate if    and 
nondegenerate if    . Thus a degenerate open interval is the empty set, and a degenerate closed 
interval is a point.

Exercises

1.2.0
Let          and consider each of the following statements. Decide which are true and which 
are false. Prove the true ones and give counterexamples to the false ones.

If    and      , then      .
False.
     And        
But 
     

1.

If    and    , then             
False

     
   
             

2.

If    and       then      .3.
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If    and       then        .
True
By the Field Axioms, there exist   such that
        
By Additive Property
               
Thus, 
     
         
Since we know that 
     
     
       

Thus, the statement is true.

3.

If      for all      then     
True????

Not sure how to prove it
But it seems that in order to let the hypothesis to be true,         

By Multiplicative Properties
         for all    

4.

1.2.1
Suppose that        and    .

Prove that         
By Additive Property (I know that it is not the precise Additive Property, but it is a fairly 
 t  ig t   w    P        …)
       

1.

If     prove that        .
We first invoke the Trichotomy Property to break the inequality down, then 
By the Multiplicative Properties 
When    , the equation is equal.

2.

1.2.2.
Prove (7), (8), and (9). Show that each of these statements is false if the hypothesis    or    is 
removed.

1.2.3 This exercise is used in Section 6.3
The positive part of an    is defined by 

   
     

 
      

And the negative part by 

   
     

 
      

Prove that        and          

      
     

 
       

     

 
       

  

 
     

      
     

 
       

     

 
       

    

 
        

1.

Prove that

    
        
        

and     
        

         

It is an easy argument by simply expand the absolute value. So I skip this question.

2.

1.2.4.
Solve each of the following inequalities for    

1.
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1.

       
          
       
     

2.

            

              

            
                
It breaks down to two inequalities

                         
 

 
        

   
    

 

 
     

   
       

                 
 

 
  

3.

 

   
       

Times both side by       

Since it s a non-negative number
We can use Multiplicative Properties
             

Expand it we get
            
And we apply the Additive Property
        
      
   

4.

  

     
        

 

 
  

Skip for the sake of my mind

5.

1.2.5.
Let      

Prove that if    and         
      

, then       
     
        

       

      
      

      

      
      

          

    
      

  

      
      

  

          
      

  

      
      

    

      
      

     
   

  

_____________________________________

       

      
      

        

1.

Prove that if      and         
      

 then      .
       

2.
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Prove that if      and         
      

, then      .3.

Prove that if      and         
      

, then      .4.

1.2.10.

Prove that                        

               

                   

               

         

           

          
                 

1.2.11.

Let   represent the collection of positive real numbers. Prove that   satisfies the 
following two properties.

For each    , one any only one of the following holds:
          , or    

Because of Trichotomy Property, that 
     
One and only one of the following statements holds:
   ,       or    

a.

Given       , both    and    belong to   .b.

1.

Suppose that  contains a subset   (not necessarily the set of positive numbers) which 
satisfies properties  and 2. Define    by       . Prove that Postulate 2 holds with 
 in place of <.

2.
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1.10 Definition
Let    be nonempty.

The set  is said to be bounded above if and only if there is an    such that    for 
all    , in which case  is called an upper bound of  

1.

A number  is called a supremum of the set  if and only if  is an upper bound of  and    
for all upper bounds  of  . (In this case we shall say that  has a finite supremum  and 
write   sup  .)

2.

1.11 EXAMPLE.
If        , prove that         
Proof. 
By the definition of interval, 1 is an upper bound of  . Let  be any upper bound of  ; that is,   
 for all     Since     it follows that    . Thus 1 is the smallest upper bound of  .

1.12 Remark.
If a set has one upper bound, it has infinitely many upper bounds.
Proof. If   is an upper bound for a set  , then so is  for any     .

1.13 Remark.
If a set has a supremum, then it has only one supremum.
Proof. Let   and   be suprema of the same set  . Then both   and   are upper bounds of  , 
whence by Definition 1.10ii,      and      . We conclude by the Trichotomy Property that 
      

NOTE: This proof illustrates a general principle. When asked to prove    , it is often easier to 
verify that    and    separately.

1.14 Theorem [Approximation Property for Suprema].
If  has a finite supremum and    is any positive number, then there is a point    such 
that 
               
Proof.
Suppose that the theorem is false. Then there is an     such that no element of  lies between 
            and      . Since      is an upper bound for  , it follows that     for all   
 ; that is   is an upper bound of  . Thus, by Definition 1.10ii,                  . Adding 
        to both sides of this inequality, we conclude that     , a contradiction.

1.15 Theorem.
If    has a supremum, then         In particular, if the supremum of a set, which contains 
only integers, exists, that supremum must be an integer.
Proof.
Suppose that        and apply the Approximation Property to choose an     such that 
         If     , then     Otherwise,         and we can apply the 
Approximation Property again to choose     such that        .
Subtract   from this last inequation to obtain             . Since        , it 
follows that                   Thus               a contradiction by Remark 
1.1iii. We conclude that     

Postulate 3. [Completeness Axiom].
If  is a nonempty subset of  that is bounded above, then  has a finite supremum. 

1.3 Completeness Axiom
2018年9月6日 15:34
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If  is a nonempty subset of  that is bounded above, then  has a finite supremum. 

1.16 Theorem [Archimedean Principle]
Given real numbers  and  , with    , there is an integer    such that     .

Strategy: The idea behind the proof is simple. By the completeness Axiom and Theorem 1.15, 
any nonempty subset of integers that is bounded above has a "largest" integer. If   is the 

largest integer that satisfies      , then         (which is larger than   ) must satisfy 

     In order to justify this application of the Completeness Axiom, we have two details to 
attend to: (1) Is the set             bounded above? (2) Is  nonempty? The answer to 
the second question depends on whether    or not. Here are the details.

Proof.
If    , set    . If    , consider the set               is nonempty since    . Let 

   (i.e.,     ). Since    , it follows from the First Multiplicative Property that   
 

 
 . This 

proves that  is bounded above by 
 

 
 . Thus by the Completeness Axiom and Theorem 1.15,  has 

a finite supremum  that belongs to  , in particular,    .
Set      . Then    and (since  is larger than  ),  cannot belong to  . Thus     .

1.17 EXAMPLE

Let      
 

 
  

 

 
  

 

 
    and    

 

 
  

 

 
  

 

 
    . Prove that               

Proof.
It is clear that 1 is an upper bound of both sets. It remains to see that  is the smallest upper 
bound of both sets. For  , this is trivial. Indeed, if  is any upper bound of  , then    (since 
   ). On the other hand, if  is an upper bound for  , but    , then      . In 

particular, 
 

   
     .

Choose, by the Archimedean Principle, an    such that   
 

   
   . It follows (do the algebra) 

that      
 

 
    Since     , this contradicts the assumption that  is an upper bound of 

 (see Figure 1.3)

1.18 Theorem [Density of Rationals].
If      satisfy    , then there is a    such that      .

Strategy: To find a fraction   
 

 
  such that      , we must specify both numerator  and 

denominator  . Let's suppose first that    and that the set         
 

 
    has a 

supremum,   . Then       , being greater than the supremum of  ,  cannot belong to  . 

Thus 
 

 
    . Is this the fraction we look for? Is 

 

 
    ? Not unless  is large enough. To see this, 

look at a concrete example:   
 

 
 and    . If    , then  has no supremum. When    , 

    and when         . In both cases 
    

 
      is too big. However, when    ,     

so 
    

 
     

 

 
 is smaller than  , as required.

How can we prove that for each fixed    there always is an  larger enough so that if   is 

chosen as above, then 
    

 
      ? By the choice of   , 

  

 
    . Let's look at the worst case scenario: 

  
  

 
  . Then   

    

 
    means

  
    

 
       

  

 
   

 

 
     

 

 
  

(i.e.,     
 

 
 ). Such an  can always be chosen by the Archimedean Principle.

What about the assumption that      exists? This requires that  be nonempty and bounded 
above. Once  is fixed,  will be bounded abouve by   . But the only way that  is nonempty is that 

at the very least,    (i.e., that 
 

 
   ). This requires a second restriction on  . We begin our 

formal proof at this point.

Proof.
Suppose first that    . Since      , use the Archimedean Principle to choose an    that 
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Suppose first that    . Since      , use the Archimedean Principle to choose an    that 
satisfies

      
 

 
   

 

   
       

And observe that both 
 

 
   and 

 

 
     .

Consider the set        
 

 
     Since    ,  is nonempty. Since      is bounded 

above by   . Hence, by Theorem 1.15,         exists and belong to  , in particular, to  . Set 

      and   
 

 
  . Since   is the supremum of  ,    . Thus    . On the other hand, 

since     , it follows from the choice of  that 

          
  

 
         

  

 
   

 

 
   

 

 
     

Now suppose that    . Choose, by the Archimedean Principle, an integer    such that   
  . Then          , and by the case already proved, there is an    such that   
       . Therefore,      belongs to  and satisfies the inequality      .

1.19 Definition.
Let    be nonempty.

The set  is said to be bounded below if and only if there is an    such that    for 
all    , in which case  is called a lower boudn of the set  .

1.

A number  is called an infimum of the set  if and only if  is a lower bound of  and   
 for all lower bounds  of  . In this case we shall say that  has an infumum  and write 
       .

2.

 is said to be bounded if and only if it is bounded both above and below.  3.

1.20 Theorem. [Reflection Principle].
Let    be nonempty.

 has a supremum if and only if   has an infimum, in which case1.
               
 has an infimum if and only if   has a supremum, in which case2.
              .

Proof. 
The proofs of these statements are similar. We prove only the first statement.
Suppose that  has a supremum  and set     . Since  is an upper bound for  ,    for all 
   , so      for all    . Therefore,  is a lower bound of   . Suppose that  is any 
lower bound of   . Then     for all    , so   is an upper bound of   Since  is the 
supremum of  , it follows that     (i.e.,       ). Thus  is the infimum of   and 
                    
Conversely, suppose that   has an infimum  . By definition,     for all    . Thus   is an 
upper bound for   Since  is nonempty,  has a supremum by the Completeness Axiom.

1.21 Theorem [Monotone Property].
Suppose that    are nonempty subsets of  .

If  has a supremum, then            .1.
If  has an infimum, then            .2.

Proof. 
Since    , and upper bound of  is an upper bound of  . Therefore,      is an upper 
bound of   It follows from the Completeness Axiom that      exists, and from Definition 
1.10ii that            .

1.

Clearly,      . Thus by part i), Theorem 1.20, and the Second Multiplicative Property,2.
                              

It is convenient to extend the definition of suprema and infima to all subsets of  . To do this we 
expand the definition of  as follows. The set of extended real numbers is defined to be    
       Thus  is an extended real number if and only if either    ,     , or     .

Let    be nonempty. We shall define         if  is unbounded above and         if 
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Let    be nonempty. We shall define         if  is unbounded above and         if 
 is unbounded below. Finally, we define         and         . Notice, then, that the 
supremum of a subset  of  (respectively, the infimum of  ) is finite if and only if  is 
nonempty and bounded above (respectively, nonempty and bounded below).

Exercise

1.30 Decide which of the following statements are true and which are false. Prove the true ones 
and give counterexamples to the false ones.

If  and  are nonempty, bounded subsets of  , then               .1.

Since   
Let  be a positive real number. If  is a nonempty, bounded subset of  and   
        , then                .

1.

If                      , where  and  are nonempty, bounded subsets of  , 
then                       .

2.

If                       where  and  are nonempty, bounded subsets of  , 
then                       .

3.
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1.22 Theorem. [Well-Ordering Principle].
If  is a nonempty subset of  , then  has a least element (i.e.,  has a finite infimum and       
 ).
Proof. 
Suppose that    is nonempty. Then   is bounded above, by   , so by the Completeness 
Axiom        exists, and by Theorem 1.15,           . Hence by Theorem 1.20,       
        exists, and               

1.23 Theorem.
Suppose for each    that     is a proposition (i.e., a verbal statement or formula) which 
satisfies the following two properties:

    is true.1.
For every    for which     is true,       is also true.2.

Then     is true for all    .
Proof.
Suppose that the theorem is false. Then the set                      is nonempty. Hence by 
the Well-Ordering Principle,  has a least element, say  .
Since        , we have by Remark 1.1ii that    . Since    , we have by hypothesis 1 
that    . In particular,      . Hence, by Remark 1.1i and iii,      and       
Since      and  is a least element of  , the statement       must be true. Applying 
hypothesis ii) to      , we see that            must also be true; that is,    , a 
contradiction.

1.24 EXAMPLE.
Prove that 

             

 

   

          

For    .
Proof.
Let     represent the statement

             

 

   

           

For    the left side of this equation is    and the right side is      . Therefore,     is 
true. Suppose that     is true for some    . Then

             

   

   

                            

 

   

                        

                 
On the other hand, a direct calculation reveals that 

                                     
Therefore,       is true when     is. We conclude by induction that     holds for all   
 .

1.25 Lemma.
If      and      , then 

 
   

 
   

 

   
   

 

 
  

Proof.
By definition,

 

   
 

 

 
  

   

        
 

       

        

  
     

        
 

   

 

1.4 Mathematical Induction
2018年9月13日 4:24
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1.26 Theorem. [Binomial Formula].
If          , and   is interpreted to be 1, then

         
 

 
       

 

   

 

Proof. 
The proof is by induction on  . The formula is obvious for     Suppose that the formula is true for 
some    . Then by the inductive hypothesis and Postulate 1,

                     

          
 

 
       

 

   

 

     
 

 
         

 

   

     
 

 
         

 

   

 

          
 

 
         

 

   

          
 

 
         

   

   

 

          
 

 
   

 

   
               

 

   

Hence it follows from Lemma 1.25 that 

                
   

 
         

 

   

        
   

 
         

   

   

 

That is, the formula is true for    . We conclude by induction that the formula holds for all    .

1.27 Remark.
If    and    , then there is an    such that        .

Proof. 
By the Archimedean Principle, the set            is nonempty. Hence by the Well-
Ordering Principle,  has a least element, say   .
Set        Since               Since   is least,         . Since    , 
we also have    . Therefore,        .

1.28 Remark.
If    is not a perfect square (i.e., if there is no    such that     ), then      is irrational.
Proof.

Suppose to the contrary that    is not a perfect square but        ; that is,       
 

 
 for some 

     . Choose by Remark 1.27 an integer     such that 
              

Consider the set                  Since         , we know that  is nonempty. Thus by the 

Well-Ordering Principle,  has a least element, say   .

Set                 By (10),              Multiplying this inequality by   , we find that 

      .
Since   is a least element of  , it follows from (11) that    . On the other hand, 

                                        

Since     . Moreover, since    and               is the difference of two integers,   
 . Thus    , a contradiction.
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Let  and  be sets and       
 is said to be 1-1 (one to one or an injection) if and only if

       and            imply       

1.

 is said to be onto (or a surjection) if and only if for each    there is a    such that 
       

2.

 is called a bijection if and only if it is both 1-1 and onto.3.
Sometimes, to emphasize the domain and range of  , we shall say that a bijection      
is 1-1 from  onto  .

1.30 Theorem.
Let  and  be sets and      . Then the following three statements are equivalent.

 has an inverse;1.
 is 1-1 from  onto  ;2.
There is a function  :    such that 3.

         for all    (13)

And

         for all   

 .

(14)

Moreover, for each      , there is only one function  that satisfies (13) and (14). It is 
the inverse function    .

Proof.

1. implies 2. By definition, if  has an inverse, then         (so  takes  onto  ) and 

each    has a unique preimage in  [so, if            , then      , i.e.,  is 1-1 on 

 ].
2. implies 3. The proof that 1. implies 2. also shows that if      is 1-1 and onto, then  

has an inverse. In particular,            satisfies (13) and (14) by (12)

3. implies 1. Suppose that there is a function      which satisfies (13) and (14). If 

some    has two preimages, say      in  , then              . It follows from 

(13) that                        , a contradiction. On the other hand, given   

 , set       . Then               by (14), so         .

Finally, suppose that  is another function which satisfies (13) and (14), and fix    . By 
2., there is an    such that       . Hence by (13)

                            

That is    on  . It follows that the function  is unique.
1.31 Remark.
Let  be an interval and let      . If the derivative of  is either always positive on  , or 
always negative on  , then  is 1-1 on  .
Proof.
By symmetry, we may suppose that the derivative   of  satisfies        for all    . We will 
use a result that almost everyone who has studied one variable calculus remembers (for a proof, 
see Theorem 4.17): If     on an interval  , then  is strictly increasing on  ; that is,        

and      imply that            .

To see why this implies that  is 1-1, suppose that            for some      in  . If      , 

then it follows from the trichotomy property that either      or      . Since  is strictly 

increasing on  , either            or            . Both of these conclusions contradict the 

assumption that            .

By Theorem 1.30,      has an inverse function    if and only if            for all    

and            for all    . This suggests that we can find a formula for    if       

can be solved for  .

1.5 Inverse Functions and Images
2018年9月13日 19:22
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can be solved for  .

1.32 Example.
Prove that            is 1-1 on  and find a formula for    on       .

Solution.
Since               for all    ,  is 1-1 on  by Remark 1.31.
Let         . Multiplying this equation by   and collecting all non-zero terms on one side 
of the equation, we have 
            
A quadratic in   . By the quadratic formula,

   
        

       
 

 
             

Since   is always positive, the minus sign must be discarded. Taking the logarithm of this last 

identity, we obtain              
       

       Therefore, 

                  
       

       

1.33 Definition
Let  and  be sets and      . The image of a set    under  is the set

                              

The inverse image of a set    under  is the set

                                

1.34 Example
Find the images and inverse images of the sets         and        under the function 
          
Solution:
Since "find" doesn't mean "prove", we look at the graph       . By definition,     consists 
of the  -values of     as  ranges over         .
Since  has roots at       and has minimum of      at       , it is clear by looking at 
the graph that                Since       consist of the  -values whose images belong to 
        , and the graph of  lies below the  -axis only when       , it is also clear that 
             . Similarly,           and 

        
      

   
 

 
                 

     
   

 
         

1.35 Definition.

Let       
   

be a collection of sets

The union of the collection  is the set
 

   
                         .

1.

The intersection of the collection  is the set

 
   

                          

2.

1.36 Theorem. [Demorgan's Laws].

Let  be a set and     
   

be a collection of subsets of  . If for each    the symbol   

represents the set      , then 

  
   

   
 

  
   

  
        

And

  
   

   
 

  
   

  
        

Proof. Suppose that  belongs to the left side of (17); that is,    and           By 
definition,    and     for all    . Hence,     

 for all    ; that is,  belongs to the 
right side of (17). These steps are reversible. This verifies (17). A similar argument verifies 
(18).

   An Introduction to Analysis Page 17    



(18).

1.37 Theorem. Let  and  be sets and      .

If     
   

is a collection of subsets  , then

   
   

      
   

                      
   

      
   

      

1.

If  and  are subsets of  , then                     2.

If     
   

is a collection of subsets of  , then

     
   

      
   

                         
   

     
   

        

3.

If  and  are subsets of  , then                            4.

If       , then            , but if    , then             5.

Proof. 

By definition,            if and only if       for some     and    . This is 

equivalent to             Similarly,            if and only if       for some 

        . This implies that for all    there is an      such that        . 

Therefore,             

1.

If               then       for some    but       for any    . It follows that 

           Simialr arguments prove parts 3., 4., and 5.,

2.

It is important to recognize that the set inequalities in parts i), ii), and v) can be strict unless  is 
1-1 (see Exercise 1.5.6 and 1.5.7). For example, if        ,        and          then 

          is a proper subset of                 
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1.38 Definition
Let  be a set.

 is said to be finite if and only if either    or there exists a 1-1 function which takes 
         onto  , for some    .

1.

 is said to be countable if and only if there exists a 1-1 function which takes  onto  .2.

 is said to be at most countable if and only if  is either finite or countable.3.

 is said to be uncountable if and only if  is neither finite nor countable.4.
1.39 Remark [Cantor's Diagonalization Argument].
The open interval      is uncountable.

Strategy: Suppose to the contrary that      is countable. Then by definition, there is a function 
 on  such that            exhausts the elements of       We could reach a contradiction if 
we could find a new number        that is different from all the     's.  How can we 
determine whether two numbers are different? One easy way is to look at their decimal 
expansions. For example, 0.1234        because they have different decimal expansions. 
Thus, we could find an  that has no preimage under  by making the decimal expansion of  
different by at least one digit from the decimal expansion of EVERY      
There is a flaw in this approach that we must fix. Decimal expansions are unique except for 
finite decimals, which always have an alternative expansion that terminates in 9s (e.g., 0.5 = 
0.49999  and                ) (see Exercise 2.2.10). Hence, when specifying the decimal 
expansion of  , we must avoid decimals that terminate in 9s.

Proof. Suppose that there is a 1-1 function  that takes  onto the interval      . Write the 

numbers         , in decimal notation, using the finite expansion when possible, that is,

               
               
               
  

Where    represents the    digit in the decimal expansion of     and none of these expansions 

terminates in 9s. Let  be the number whose decimal expansion is given by         where 

    
                   
                   

Clearly,  is a number in      whose decimal expansion does not contain one  , much less 

terminate in 9s. Since  is onto, there is a    such that        Since we have avoided 9s, the 

decimal expansions of     and  must be identical (e.g.,               It follows that   

  , a contradiction.

It is natural to ask about the countability of the sets          . To answer these questions, we 
prove several preliminary results. First, to show that a set  is at most countable, we do not 
need to construct a ONE-TO-ONE function which takes  onto  .

1.40 Lemma.

A nonempty set  is at most countable if and only if there is a function  from  onto  .

Proof.
If  is countable, then by Definition 1.38ii there is a (1-1) function  from  onto  , so    
takes  onto  . If  is finite, then there is an    and 1-1 function  that takes          onto 
 . Hence

      
           

           
Takes  onto  .

1.6 Countable and Uncountable Sets
2018年10月11日 13:55
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Takes  onto  .

Conversely, suppose that  takes  onto  . We need to construct a function  that is 1-1 from 
some subset of  onto  . We will do this by eliminating the duplication in  . To this end, let    

  If the set                    is empty, then          , thus evidently at most 

countable. Otherwise, let   be the least element in   and notice that      .

Set                                 If   is empty, then                is finite, 

hence at most countable. Otherwise, let   be the least element in   . Since       

                  we have            and            . Since  is a function, the first 

condition implies      . Since   is least in   , the second condition implies      . Hence, 
        .
Continue this process. If it ever terminates, then some

                                 

Is empty, so  is finite, hence at most countable. If this process never terminates, then we 
generate integers        such that     is the least element of   for         

Set               . To show that  is 1-1, notice that    implies that      , say    

  . Then        , so by construction

                                                         

In particular,            ; that is,           

To show that  is onto, let    . Since  is onto, choose    such that       . Since by 
construction     , use the Archimedean Principle to choose a    such that     . Since 

  is the least element in     , it follows that     cannot belong to                      ; 

that is,           for some          . In particular,              

Next, we show how set containment affects countability and use it to answer the question about 
countability of  .

1.41 Theorem. 
Suppose that  and  are sets.

If    and  is at most countable, then  is at most countable.1.

If    and   is uncountable, then  is uncountable. 2.

 is uncountable.3.
Proof. 

Since  is at most countable, choose by Lemma 1.40 a function  which takes  onto  . 
We may suppose that  is nonempty, hence fix an     . Then 

      
              

                

1.

Takes  onto  . Hence by Lemma 1.40,  is at most countable.
If  were at most countable, then by part 1.,  would also be at most countable, a 
contradiction.

2.

By Remark 1.39, the interval      is an uncountable subset of  . Thus, by part 2,  is 
uncountable.

3.

1.42 Theorem.
Let        be at most countable sets.

Then      is at most countable.1.
If 

   
 

   
    

   
                           ,

2.

Then  is at most countable.

Proof.
By Lemma 1.40, there exist functions  (respectively,  ) which take  onto   

(respectively, onto   ). Hence                   takes    onto      . If we 

can construct a function  which takes  onto    , then by Exercise 1.6.5a,    takes  
onto      . Hence by Lemma 1.40,      is at most countable.

1.

To construct the function  , plot the points of    in the plane. Notice that we can 
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To construct the function  , plot the points of    in the plane. Notice that we can 
connect these lattice points with a series of parallel backward-slanted lines; for example, 
the first line passes through      , the second line passes through      and      , and the 
third line passes through              and       This suggests a method for constructing 
 . Set           ,                      ,              
If you wish to see an explicit formula for  , observe that the  th line passes through the 
set of lattice points

                                      

That is, through the set of lattice points      which satisfy        . Since the sum of 

integers            is given by 
      

 
     (see Exercise 1.4.4a), there are 

      

 
     

elements in the first    slanted lines. Hence a function which takes  onto the  th 
slanted line is given by

               

Where     
      

 
      This function is defined on all of  because given    , we can use 

the Archimedean Principle and the Well-Ordering Principle to choose  least such that   
      

 
     ; that is, such that     

      

 
     for some         Thus  takes  onto    .

By Lemma 1.40, choose functions   that take  onto       . Clearly, the function 

            takes    onto  . Hence the function    , where  is defined by (19), 

takes  onto  . We conclude by Lemma 1.40 that  is at most countable.

2.

1.43 Remark. 
The sets  and  are countable, but the set of irrationals is uncountable.

Proof.

            and       
  

 

 
      are both countable by Theorem 1.42ii.

If      were countable, then            would also be countable, a contradiction of 

Theorem 1.41iii.
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Chapter 2 Sequences in  
2018年10月16日 13:49
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2.1 Definition

A sequence of real numbers     is said to converge to a real number    if and only if for every 

   there is an    (which in general depends on  ) such that 

                          

2.2 Example

Prove that 
 

 
   as    .1.

If     , prove that 
     

  
      

 

 
 as    2.

Proof.

Let    . Use the Archimedean Principle to choose    such that   
 

 
 . By taking the 

reciprocal of this inequality, we see that    implies 
 

 
  

 

 
    . Since 

 

 
 are all positive, it 

follows that  
 

 
    for all     

1.

Strategy for 2:
By definition, we must show that 

     

  
        

 

 
   

    

   
      

Is small for large  . The numerator of this last fraction will be small for large  since 
    , as    . What about the denominator? Since     ,   will be greater 
than 1 for large  , so    will be greater than 2 for large  . Since we made  large 
twice, we will make two restrictions to determine the  that corresponds to  in 
Definition 2.1. Let's try to write all this down carefully to be sure that it works out.

Let    . Since     , apply Definition 2.1 to this    to choose     such that   

  implies         . Next, apply Definition 2.1 with    to choose   such that   

  implies         . By the Fundamental Theorem of Absolute Values, we have     

implies     (i.e.,      ).

2.

Set             and suppose that    . Since     , we have               

 . Since     , we have   
 

   
    

 

 
   . It follows that 

 
     

  
        

 

 
    

        

   
          

 

   
     

For all    .
2.3 Example.
The sequence           has no limit.

Proof. Suppose that        as    for some    . Given    , there is an    
such that    implies            . For  odd this implies               , 
and for  even this implies        . Hence

                          
That is,    , a contradiction.

2.4 Remark.
A sequence can have at most one limit.
Proof.

Suppose that     converges to both  and  . By definition, given    , there is an integer  

such that    implies        
 

 
 and        

 

 
 . Thus it follows from the triangle 

inequality that 
                     

That is,        for all    . We conclude, by Theorem 1.9, that    .

2.5 Definition

By a subsequence of a sequence     
   

, we shall mean a sequence of the form     
 
   

, where 

each     and        .

2.1 Limits of Sequences
2018年10月16日 13:49
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each     and        .

2.6 Remark

If     
   

converges to  and     
 
   

is any subsequence of     
   

, then    
converges to  

as    .
Proof.

Let    and choose    such that    implies         . Since     and       

 , it is easy to see by induction that     for all    . Hence,    implies     
     ; 

that is,    
  as    .

2.7 Definition

Let     be a sequence of real numbers.

The sequence     is said to be bounded above if and only if the set         is bounded 

above.

1.

The sequence     is said to be bounded below if and only if the set         is bounded 

below.

2.

    is said to be bounded if and only if it is bounded both above and below.3.

Combining Definitions 2.7 and 1.10, we see that     is bounded above (respectively, below) if 

and only if there is an    such that     for all    (respectively, if and only if there is 

an    such that     for all    ). It is easy to check (see Exercise 2.1.4) that     is 

bounded if and only if there is a    such that       for all    . In this case we shal say 

that     is bounded, or dominated, by  .

2.8 Theorem.
Every convergent sequence is bounded.
Strategy: The idea behind the proof is simple (see Figure 2.1). Suppose that     as    . By 
definition, for large  the sequence          must be close to  , hence bounded. Since the 
finite sequence          is also bounded, it should follow that the whole sequence is 
bounded. We now make this precise.
Proof.

Given    , there is an    such that    implies          Hence by the triangle 

inequality,           for all    . On the other hand, if      , then 

                             

Therefore,     is dominated by               

   An Introduction to Analysis Page 24    



2.9 Theorem [Squeeze Theorem].

Suppose that          and     are real sequences.

If     and     (the SAME  ) as    , and if there is an     such that 
                      ,

1.

Then     as    .

If     as    and     is bounded, then       as    .2.

Proof.
Let     Since   and   converge to  , use Definition 2.1 and Theorem 1.6 to choose 
       such that     implies          and     implies          . 

Set                 If    , we have by hypothesis and the choise of   and   that 

                ;

1.

That is,         for    . We conclude that     as    .

Suppose that     and that there is an    such that       for    . Let    

and choose an    such that    implies      
 

 
  . Then    implies

        
 

 
    

2.

We conclude that       as    . 

2.10 Example.

Find                          

Solution.

The factor                looks intimidating, but it is superfluous for finding the limit of this 

sequence. Indeed, since         for all    , the sequence                     is 

dominated by    . Since     , it is clear by Example 2.2i and the Squeeze Theorem that both 

     and                     as    .

2.11 Theorem.
Let    . If  has a finite supremum (respectively,  a finite infimum), then there is a sequence 
    such that         (respectively, a sequence     such that         ) as    .
Proof.
Suppose that  has a finite supremum. For each    , choose (by the Approximation Property 

for Suprema) an     such that      
 

 
         . Then by the Squeeze Theorem and 

Example 2.2i,        as    . Similarly, there is a sequence     such that        .

2.12 Theorem.

Suppose that     and     are real sequences and that    . If     and     are convergent, 

then

   
   

           
   

      
   

  1.

   
   

          
   

   2.

And

   
   

           
   

       
   

    3.

If, in addition,     and           , then 

   
   

  

  
    

    
   

   

    
   

   
         4.

(In particular, all these limits exist.)
Proof.
Suppose that     and     as    .

Let    and choose    such that    implies      
 

 
and      

 

 
. Thus 

2.2 Limit Theorems
2018年10月21日 15:54
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Let    and choose    such that    implies        
 

 
 and        

 

 
 . Thus 

   implies

                              
 

 
   

 

 
     

1.

It suffices to show that         as    . But       as    , hence by the 

Squeeze Theorem,          as    .

2.

By Theorem 2.8, the sequence     is bounded. Hence by the Squeeze Theorem the 

sequence           and          both converge to 0. Since 

                         

3.

It follows from part 1) that        as    . A similar argument establishes part 4) 
(see Exercise 2.2.4)

2.13 Example.

Find       
       

             

Solution.

Multiplying the numerator and denominator by 
 

    , we find that 

       

     
           

    
 
 
     

 
       

 
       

               

By Example 2.2i and Theorem 2.12iii, 
 

      
 

 
  

 
  , as    , for any    . Thus by Theorem 

2.12i, ii, and iv,

   
   

       

                
     

   
          

 

 
  

2.14 Definition.

Let     be a sequence of real numbers.

    is said to diverge to   (notation:      as    or            ) if and 

only if for each    there is an    such that
   implies     .

1.

    is said to diverge to   (notation:      as    or            ) if and 

only if for each    there is an    such that 
   implies     .

2.

2.15 Theorem.

Suppose that     and     are real sequences such that      (respectively,      ) as 

   .
If   is bounded below (respectively,   is bounded above), then 

   
   

                                    
   

            

1.

If    , then 

   
   

                               
   

          

2.

If      for some     and all    , then 

   
   

                                      
   

           

3.

If     is bounded and     , then 

   
   

  

  
      

4.

Proof.
We suppose for simplicity that      as    .

By hypothesis,      for some     . Let    and set        . Since    
  , choose    such that    implies      . Then    implies          
    .

1.

Let    and set    
 

 
   Choose    such that    implies      . Since    , 

we conclude that          for all    .

2.

Let    and set    
 

  
. Choose    such that    implies            .
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Let    and set    
 

  
  . Choose    such that    implies            .3.

Let    . Choose     such that        and     so large that 
  

  
    . Choose   

 such that    implies      . Then    implies      . Then    implies

 
  

  
     

    

  
    

  

  
      

4.

If we adopt the conventions 
                   
                     
                    
              
                                      

2.16 Corollary.

Let          be real sequences and      be extended real numbers. If     and     , as 

   , then 

   
   

           

Provided that the right side is not of the form    , and 

   
   

            
   

         

Provided that none of these products is of the form     .
We have avoided the cases    and     because they  are "indeterminate". For a 
discussion of indeterminates forms, see l'Hospital's Rule in Section 4.4

2.17 Theorem. [Comparison Theorem].

Suppose that     and     are convergent sequences. If there is an     such that 

               ,
Then 

   
   

      
   

   

In particular, if         converges to some point  , then   must belong to      .

Proof. Suppose that the first statement is false; that is    holds but           is greater 

than           . Set   
   

 
    Choose      such that         and         for 

    . Then for such an  ,

          
   

 
          

   

 
              

Which contradicts (1). This proves the first statement.
We conclude by noting that the second statement follows from the first, since       
implies      .

One way to remember this result is that it says the limit of an inequality is the inequality of the 
limits, provided these limits exist. We shall call this process "taking the limit of an inequality". 

Since      implies      , the Comparison Theorem contains the following corollary: If     

and     are convergent real sequences, then 

                         
   

      
   

   

It is important to notice that this result is false if  is replaced by  ; that is 
                                  

   
      

   
   

For example, 
 

     
 

 
 , but the limits of these sequences are equal.
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2.18 Definition.

Let     
   

be a sequence of real numbers.

    is said to be increasing (respectively, strictly increasing) if and only if        

(respectively,        )

1.

    is said to be decreasing (respectively, strictly decreasing) if and only if        

(respectively,        ).

2.

    is said to be monotone if and only if it is either increasing or decreasing.3.

(Some authors call decreasing sequences nonincreasing and increasing sequences 
nondecreasing.)

2.19 Theorem. [Monotone Convergence Theorem].

If     is increasing and bounded above, or if     is decreasing and bounded below, then     

converges to a finite limit.

Proof.

Suppose first that     is increasing and bounded above. By the Completeness Axiom, the 

supremum              exists and is finite. Let    . By the Approximation Property for 

Suprema, choose    such that 
         

Since      for    and     for all    , it follows that         for all    . In 
particular,      as    .

If     is decreasing with infimum              , then      is increasing with supremum 

  (see Theorem 1.20). Hence, by the first case and Theorem 2.12ii, 

            
   

         
   

   

The Monotone Convergence Theorem is used most often to show that a limit exists. Once 
existence has been established, it is often easy to find the value of that limit by using Theorems 
2.9 and 2.12. The following examples illustrate this fact.

2.20 Example.
If       then     as    .
Proof.
It suffices to prove that        as    . First, we notice that     is monotone decreasing 
since by the Multiplicative Property,      implies            for all    . Next, we 
observe that     is bounded below (by 0). Hence by the Monotone Convergence Theorem,   
          exists.

Take the limit of the algebraic identity                , as    . By Remark 2.6 and 
Theorem 2.12, we obtain        . Thus either    or      . Since      by 
hypothesis, we conclude that    .

2.21 Example.

If    , then  
 

 
    as    .

Proof.
We consider three cases.

Case 1.    . Then  
 

 
    for all    , and it follows that  

 

 
    as    .

Case 2.    . We shall apply the monotone Convergence Theorem. To show that   
 

 
   is 

decreasing, fix    and notice that    implies        . Taking the       st root of this 

inequality, we obtain  
 

 
    

 

   
     that is,  

 

 
  is decreasing. Since    implies  

 

 
     it follows 

that  
 

 
  is decreasing and bounded below. Hence, by the Monotone Convergence Theorem,   

       
 

 
  exists. To find its value, take the limit of the identity   

 

  
    

 

  
 

 
  as    . We 

obtain     ; that is,    or  . Since  
 

   , the Comparison Theorem shows that    . 

2.3 Bolzano-Weierstrass Theorem
2018年10月25日 15:54
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obtain     ; that is,    or  . Since  
 

 
    , the Comparison Theorem shows that    . 

Hence    .

Case 3.       Then 
 

 
    It follows from Theorem 2.21 and Case 2 that

   
   

 
 

 
      

   

 
 

 
 
   

   
    

 

       
 

 
   

 
   

           .

Next, we introduce a monotone property for sequences of sets.

2.22 Definition.

A sequence of sets     
   

is said to be nested if and only if 

       .
2.23 Theorem. [Nested Interval Property].

If     
   

is a nested sequence of nonempty closed bounded intervals, then      
 
   is 

nonempty. Moreover, if the lengths of these intervals satisfy       as    , then  is a single 

point.

Proof. 

Let           . Since     is nested, the real sequence     is increasing and bounded above by 

  , and     is decreasing and bounded below by   (see Figure 2.2). Thus by Theorem 2.19, there 

exist      such that     and     as    . Since      for all    , it also follows 
from the Comparison Theorem that          . Hence, a number  belongs to   for all 
   if and only if      ; that is, if and only if         In particular, any        belongs 
to all the   's.

We have proved that there is exactly one number that belongs to all the   's if and only if    . 

But if       as    , then        as    . Hence, by Theorem 2.12,  does equal  

when       as    .

2.24 Remark.
The Nested Interval Property might not hold if "closed" is omitted.

Proof.

The intervals       
 

 
      , are bounded and nested but not closed. If there were an     

for all    , then     
 

 
 ; that is,   

 

 
 for all    . Since this contradicts the Archimedean 

Principle, it follows that the intervals   have no point in common.

2.25 Remark.
The Nested Interval Property might not hold if "bounded" is omitted.

Proof.
The intervals             are closed and nested but not bounded. Again, they have no 
point in common.

We are now prepared to establish the main result of this section.

2.26 Theorem. [Bolzano-Weierstrass Theorem].
Every bounded sequence of real numbers has a convergent subsequence.

Proof.

We begin with a general observation. Let     be any sequence. If      are sets and  

contains   for infinitely many values of  , then at least one of the sets  or  also contains   

for infinitely many values of  . (If not, then  contains   for only finitely many  , a 
contradiction.)

Let     be a bounded sequence. Choose      such that         for all    , and set    

     . Divide   into two halves, say       
   

 
    and      

   

 
       Since          , at least 

one of these half-intervals contains   for infinitely many  . Call it   , and choose     such 
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one of these half-intervals contains   for infinitely many  . Call it   , and choose     such 

that    
   . Notice that      

    

 
    

   

 
    

Suppose that closed intervals           and natural numbers           have 
been chosen such that for each      ,

     
   

           
                                     

To choose     , divide           into two halves, say        
     

 
       and     

 
     

 
          . Since          , at leasst one of these half-intervals contains   for infinitely 

many  . Call it     , and choose        such that      
     . Since

       
    

 
    

   

    
      

It follows by induction that there is a nested sequence     
   

of nonempty closed bounded 

intervals that satisfy (2) for all    .
By the Nested Interval Property, there is an    that belongs to   for all    . Since     , 
we have by (2) that 

      
         

   

  
     

For all    . Hence by the Squeeze Theorem,    
  as     
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2.27 Definition.
A sequence of points     is said to be Cauchy (in  ) if and only if for every    there is an 
   such that 

                           

2.28 Remark.

If     is convergent, then     is Cauchy.

Proof.
Suppose that     as    . Then by definition, given    there is an    such that 

       
 

 
 for all    . Hence if      , it follows from the triangle inequality that 

                      
 

 
   

 

 
     

2.29 Theorem. [Cauchy].

Let     be a sequence of real numbers. Then     is Cauchy if and only if     converges (to some 

point  in  ).

Strategy: By Remark 2.28, we need only show that every Cauchy sequence converges. Suppose 

that     is Cauchy. Since the   's are near each other, the sequence     should be bounded. 

Hence, by the Bolzano-Weierstrass Theorem,     has a convergent subsequence, say    
. This 

means that for large  , the    
's are near some point    . But since     is Cauchy, the   's 

should be near the    
's for large  , hence also near  . Thus the full sequence should converge 

to that same point  . Here are the details.

Proof.

Suppose that     is Cauchy. Given    , choose    such that          for all    . 

By the triangle inequality,

                      .

Therefore,     is bounded by                                 .

By the Bolzano-Weierstrass Theorem,     has a convergent subsequence, say    
  as   

 . Let    . Since   is Cauchy, choose     such that 

                        
 

 
   

Since    
  as    , choose     such that 

                     
    

 

 
   

Fix     such that      . Then 

              
      

     

For all     . Thus     as     

The result is extremely useful because it is often easier to show that a sequence is Cauchy than to 
show that it converges. The reason for this, as the following example shows, is that we can prove 
that a sequence is Cauchy even when we have no idea what its limit is.
2.30 Example.

Prove that any real sequence     that satisfies

          
 

            

is convergent.

Proof.
If    , then 

2.4 Cauchy Sequences
2018年10月28日 15:23
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If    , then 

                                      

                                    

  
 

        
 

         

  
 

         
 

     

   

   

 
 

           
 

           

(The last step uses Exercise 1.4.4c, for    .) It follows that         
 

       for all integers   

   . But given    , we can choose    so large that    implies 
 

         . We have 

proved that     is Cauchy. By Theorem 2.29, therefore, it converges to some real number.

The following result shows that a sequence is not necessarily Cauchy just because   is near 
    for large  .

2.31 Remark.
A sequence that satisfies          is not necessarily Cauchy.

Proof.
Consider the sequence         By basic properties of logarithms (see Exercise 5.3.7),

                          
   

 
             

As    .     cannot be Cauchy, however, because it does not converge; in fact, it diverges to 

  as    . 
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The Section is not complete. Space holder.

2.32 Definition.

Let     be a real sequence. Then the limit supremum of     is the extended real number 

*2.5 Limits Supremum and Infimum
2018年10月29日 21:38
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Chapter 3 Functions on  
2018年10月30日 12:12
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3.1 Definition.
Let    , let  be an open interval which contains  , and let  be real function defined 
everywhere on  expect possibly at  . Then     is said to converge to  , as  approaches  , if 
and only if for every    there is a    (which in general depends on  ,  ,  , and  ) such that 

                                 

In this case we write
     

   
                        

And call  the limit of     as  approaches  .

3.2 Example.
Suppose that          , where      . Prove that 

        
   

    

For all    .
Proof.

If    , there is nothing to prove. Otherwise, given    , set   
 

   
    If        , then 

                                          

Thus by definition,          as    .
Sometimes, in order to determine  , we must break       into two factors, replacing the less 
important factor by an upper bound.

3.3 Example.

If            , prove that        as    .
Proof.
Let    and set     . Notice that 

                         
If      , then        implies      , so by the triangle inequality,           

   . Set         
 

 
   It follows that        , then 

                               .

Thus by definition,       as    .

Before continuing, we would like to draw your attention to two features of Definition 3.1: 
Assumption 1. The interval  is open; Assuption 2.         If        is an open interval 
and                , then         implies    . Hence, Assuption 1 guarentees that 
for    sufficiently small,     is defined for all    satisfying        (i.e., on BOTH 
sides of a). Since        is equivalent to    , Assumption 2 guarentees that  can have a 
limit at  without being defined at  . (This will be cricial for defining derivatives later.)
The next result shows that even when a function  is defined at  , the value of the limit of  at  
is, in general, independent of the value     .

3.4 Remark.
Let    , let  be an open interval which contains  , and let    be real functions defined 
everywhere on  except possibly at  . If          for all          and       as    , 
then     also has a limit as    , and 

   
   

        
   

     

Proof.
Let    and choose    small enough so that (1) holds and        implies    . 

Suppose that          . We have          by hypothesis and           by (1) . It 

follows that           .

Thus to prove that a function  has a limit, we may begin by simplifying  algebraically, even 

3.1 Two-sided Limits
2018年10月30日 12:13
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Thus to prove that a function  has a limit, we may begin by simplifying  algebraically, even 
when that algebra is invalid at finitely many points.

3.5 Example.
Prove that 

     
         

    
              

Has a limit as    .

Proof.
Set         and observe by Example 3.2 that       as    . Since 

     
         

    
               

           

    
                   

For     , it follows from Remark 3.4 that     has a limit as    (and that limit is 2).

3.6 Theorem. [Sequential Characterization of Limits].

Let    , let  be an open interval which contains  , and let  be a real function defined 
everywhere on  except possibly at  . Then

     
   

    

Exists if and only if        as    for every sequence           which converges to  as 

   .

Proof.
Suppose that  converges to  as  approaches  . Then given    there is a    such that (1)
holds. If           converges to  as     then choose an    such that    implies 

        . Since     , it follows from (1) that            for all    . Therefore, 

       as    .

Conversely, suppose that        as    for every sequence           which converges 

to  . If  does not converge to  as  approaches  , then there is an    (call it   ) such that 

the implication          implies            does not hold for any    . Thus, for 

each   
 

 
      there is a point     which satisfies two conditions:          

 

 
 and 

            . Now the first condition and the Squeeze Theorem (Theorem 2.9) imply that 

    and     so by hypothesis,        , as    . In particular,             for  

large, which contradicts the second condition.

3.7 Example.
Prove that 

         
 

 
         

               
Has no limit as    .

Proof.
By examining the graph of       (see Figure 3.1), we are led to consider two extremes:

   
 

       
                  

 

       
              

Clearly, both   and   converge to 0 as    . On the other hand, since        and       

  for all    ,        and         as    . Thus by Theorem 3.6, the limit of     , 

as    , cannot exist.

Theorem 3.6 also allows us to translate results about limits of sequences to results about limits 
of functions. The next three theorems illustrate this principle.
Before stating these results, we introduce an algebra of functions. Suppose that        . For 
each    , the pointwise sum,    , of  and  is defined by 

            ,
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                  ,

The scalar product,   , of a scalar    with  , by 

             ,

The pointwise product,   , of  and  , by

                ,

And (when       ) the pointwise quotient, 
 

 
 , of  and  , by

 
 

 
       

    

    
     

The following result is a function analogue of Theorem 2.12

3.8 Theorem. 
Suppose that    , that  is an open interval which contains  , and that    are real functions 
defined everywhere on  except possibly at  . If     and     converge as  approaches  , then 

so do         ,                      
 

 
     (when the limit of     is nonzero). If fact,

   
   

            
   

        
   

     

   
   

            
   

     

   
   

           
   

       
   

     

And (when the limit of     is nonzero)

   
   

 
 

 
       

   
   

    

   
   

    
         

Proof.
Let 

     
   

                
   

     

If           converges to  , then by Theorem 3.6,        and        as    . By 

Theorem 2.12i,                as     Since this holds for any sequence           

which converges to  , we conclude by Theorem 3.6 that

   
   

                
   

        
   

     

The other rules follow in an analogous way from Theorem 2.12ii through 2.12iv.

Similarly, the Sequential Characterization of Limits can be combined with the Squeeze and 
Comparison Theorems for sequences to establish the following results.

3.9 Theorem. [Squeeze Theorem for Functions].
Suppose that    , that  is an open interval which contains  , and that      are real functions 
defined everywhere on  except possibly at  .

If               for all          , and
   
   

        
   

       
1.

Then the limit of     exists, as    , and 
   
   

       

If         for all          and       as    , then

   
   

           

2.

3.10 Theorem. [Comparison Theorem for Functions].
Suppose that    , that  is an open interval which contains  , and that    are real functions 
defined everywhere on  except possibly at   If  and  have a limit as  approaches  and 
         for all          , then 

   
   

        
   

     

We shall refer to this last result as taking the limit of an inequality.

The limit theorems (Theorems 3.8, 3.9, and 3.10) allow us to prove that limits exist without resorting 
to  's and  's.

3.11 Example.
Prove that
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Prove that

   
   

   

    
         

Proof. 

By Example 3.2,      and       as    . Hence, by Theorem 3.8, 
   

    
     

 

 
   as 

   .
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3.12 Definition.
Let    and  be a real function.

    is said to converge to  as  approaches  from the right if and only if  is defined on 
some open interval  with left endpoint  and for every    there is a    (which in 
general depends on            ) such that 

                                      

1.

In this case we call  the right-hand limit of  at  , and denote it by 
            

    
     

    is said to converge to  as  approaches  from the left if and only if  is defined on 
some open interval  with right endpoint  and for every    there is a    (which in 

general depends on            ) such that      and        imply          

 . In this case we call  the left-hand limit of  at  and denote it by 
            

    
     

2.

3.13 Examples.
Prove that 

      
         
         

1.

Has one-sided limits at    but           does not exist.
Prove that 

   
            

2.

Proof.

Let    and set    . If      , then                 . Hence            

exists and equals 1. Similarly,            exists and equals   . However,    
     

 
      

but               
 

 
  does not converge as    . Hence by the Sequential 

Characterization of Limits,           does not exist.

1.

Let    and set     . If      , then                
   

   2.

Not every function has one-sided limits (see Example 3.7). Examples 3.13 show that even when 
a function has one-sided limits, it may not have a two-sided limit. The following result, however, 
shows that if both one-sided limits, at a point  , exist and are EQUAL, then the two-sided limit at 
 exists.

3.14 Theorem. 
Let  be a real function. Then the limit 

   
   

    

Exists and equals  if and only if 
     

    
        

    
     

Proof.
If the limit  of     exists as    , then given    choose    such that          

implies            Since any  which satisfies        or        also satisfies 

         , it is clear that both the left and right limits of     exist as    and satisfy (3).
Conversely, suppose that (3) holds. Then given    there exists a     (respectively, a    

 ) such that         (respectively,         ) implies           . Set   

           Then          implies         or         (depending on 
whether  is to the right or to the left of  ). Hence (1) holds; that is       as    .

3.15 Definition.
Let      and let  be a real function.

3.2 One-sided Limits and Limits at Infinity
2018年11月1日 4:28
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Let      and let  be a real function.
    is said to converge to  as    if and only if there exists a    such that       

      and given    there is an    such that    implies           , in 

which case we shall write
   
   

                           

1.

Similarly,     is said to converge to  as     if and only if there exists a    such 
that              and given    there is an    such that    implies 

           in which case we shall write

   
   

                          

The function     is said to converge to  as    if and only if there is an open interval  
containing  such that               and given    there is a    such that   
       implies       , in which case we shall write

   
   

                           

2.

Similarly,     is said to converge to   as    if and only if there is an open interval  
containing  such that               and given    there is a    such that   
       implies       , in which case we shall write

   
   

                            

3.16 Examples.

Prove that 
 

 
           1.

Prove that 

   
    

        
    

   

        
               

2.

Proof.

Given    , set   
 

 
  If    , then  

 

 
   

 

 
  

 

 
     Thus 

 

 
           1.

Let     We must show that       for  near but to the left of 1 (no matter how 
large and negative  is). Without loss of generality, assume that    . As  converges to 
1 from the left,         is negative and converges to 0. (Observe that         is 

a parabola opening upward with roots 
 

 
 and  .) Therefore, choose        such that   

     implies 
 

 
              that is,  

 

        
           

 

 
      Since      

also implies        , it follows that  
   

        
              that is,

     
   

        
             

2.

For all        .

In order to unify the presentation of one-sided, two-sided, and infinite limits, we introduce the 
following notation. Let  be an extended real number, and let  be a nondegenerate open 
interval which either contains  or has  as one of its endpoints. Suppose further that  is a real 
function defined on  except possibly at  . If  is finite and  contains  , then 

   
   
   

    

Will denote           (when it exists); if  is a finite left endpoint of  , then (4) will denote 
           (when it exists); if  is a finite right endpoint of  , then (4) will denote 
           (when it exists); if     is an endpoint of  , then (4) will denote            
(when each exists).
Using this notation, we can state a Sequential Characterization of Limits valid for two-sided, 
one-sided, and infinite limits.

3.17 Theorem.
Let  be an extended real number, and let  be a nondegenerate open interval which either 
contains  or has  as one of its endpoints. Suppose further that  is a real function defined on  
except possibly at  . Then

   
   
   

    

Exists and equals  if and only if        for all sequences     which satisfy     and 

    as     
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    as     

Proof. 
Since we have already proved this for two-sided limits, we must show it for the remaining eight 
cases which notation (4) represents. Since the proofs are similar, we shall give the details for 
only one of these cases, namely the case when  belongs to  and     Thus, we must prove 

that       as    if and only if        for any sequence     which converges to  

and satisfies     for    .
Suppose first that       as    . If     ,     as    , and     , then given    
there is a    such that          implies       , and there is an    such that   

 implies          Consequently,    implies         that is,        as    as 

required.

Conversely, suppose to the contrary that        for any sequence     which converges 

to  and satisfy     but     does NOT converge to  as    . By the definition of 

"convergence" to  there are numbers     and     such that        
 

 
 and       

  for all    . The first condition implies     but the second condition implies that      
does not converge to  as    . This contradiction proves Theorem 3.17 in the case    and 
   .

Using Theorem 3.17, we can prove limit theorems that are function analogues of Theorem 2.15 
and Corollary 2.16. We leave this to the reader and will use these results as the need arises.

3.18 Example.
Prove that 

   
   

     

    
           

Proof.

Since the limit of a product is the product of the limits, we have by Example 3.16i that 
 

       as 

   for any    . Multiplying numerator and denominator of the expression above by     , 
we obtain
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3.19 Definition.
Let  be nonempty subset of  and       

 is said to be continuous at a point    if and only if given    there is a    (which 
in general depends on  ,  , and  ) such that 

                 imply               

1.

 is said to be continuous on  (notation:  :    is continuous) if and only if  is 
continuous at every    . 

2.

3.20 Remark.
Let  be an open interval which contains a point  and      . Then  is continuous at    if 
and only if 

        
   

     

Proof.
Suppose that        and set                     If     , then        implies 
   . Therefore, condition (5) is identical to (1) when           , and     . It follows that 
 is continuous at    if and only if          as     

3.21 Theorem.
Suppose that  is a nonempty subset of  , that    , and that      . Then the following 
statements are equivalent:

 is continuous at    .1.

If   converges to  and     , then           as     2.

3.22 Theorem.
Let  be a nonempty subset of  and        . If    are continuous at a point    
(respectively, continuous on the set  ), then so are    ,   , and   (for any    ). Moreover, 
 

 
 is continuous at    when       (respectively, on  when       for all    ).

It follows from Exercise 3.1.6, 3.1.7, and 3.1.8 that if    are continuous at a point    or on a 

set  , then so are                       We also notice by Exercise 3.2.3 that every 

polynomial is continuous on   

3.23 Definition.
Suppose that  and  are subsets of  , that      and      . If       for every    , 
then the composition of  with  is the function        defined by 

                     

3.24 Theorem.
Suppose that  and  are subsets of  , that      and      , and that       for every 
   .

If          , where  is a nondegenerate interval which either contains  or has  as one 
of its endpoints, if 

     
   
   

    

1.

Exists and belongs to  , and if  is continuous at    , then 
   
   
   

          
 
   
   
   

    
 
 

If  is continuous at    and  is continuous at       , then    is continuous at   
 .

2.

Proof.

Suppose that         and that     as    . Since           . Also, by the 

3.3 Continuity
2018年11月2日 18:56
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Suppose that           and that     as    . Since               . Also, by the 

Sequential Characterization of Limits (Theorem 3.17),        as     Since  is 

continuous at    , it follows from Theorem 3.17,            as    in  . This proves i). 
A similar proof establishes part ii).

3.25 Definition.
Let  be a nonempty subset of  . A function      is said to be bounded on  if and only if 

there is an    such that         for all    , in which case we shall say that  is 

dominated by  on  .

3.26 Theorem. [Extreme Value Theorem].
If  is a closed, bounded interval and      is continuous on  , then  is bounded on  . 
Moreover, if 

     
   

                
   

     

Then there exist points,        such that 

                     

Proof. 
Suppose first that  is not bounded on  . Then there exist     such that 

              

Since  is bounded, we know (by the Bolzano-Weierstrass Theorem) that     has a convergent 

subsequence, say    
  as     Since  is closed, we also know (by the Comparison 

Theorem) that    . In particular,        On the other hand, substituting   for  in (7) and 

taking the limit of this inequality as    , we have         , a contradiction. Hence, the 

function  is bounded on  .
We have proved that both  and  are finite real numbers. To show that there is an     such 

that        , suppose to the contrary that       for all    . Then the function

     
 

      
        

Is continuous, hence bounded on  . In particular, there is a    such that              . It 

follows that 

       
 

 
  

For all    . Taking the supremum of (8) over all    , we obtain     
 

 
   , a 

contradiction. Hence, there is an     such that         A similar argument proves that 

there is an     such that         

3.27 Remark.
The Extreme Value Theorem is false is either "closed" or "bounded" is dropped from the 
hypotheses.

Proof.

The interval      is bounded but not closed, and the function      
 

 
 is continuous and 

unbounded on       The interval      is closed but not bounded, and the function       is 
continuous and unbounded on       

3.28 Lemma.

Suppose that    and that           If  is continuous at  point         and         

then there exist a positive number  and a point         such that      and       for 

all           

Strategy: The idea behind this proof is simple. If        , then      
     

 
    for  near   . Here 

are the details.
Proof.

Let   
   

 
. Since     , it is easy to see that    

    

 
is positive and that          
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Let   
     

 
    . Since     , it is easy to see that    

    

 
    is positive and that          

implies         Use Definition 3.19 to choose       such that        and         

imply                

Fix             and suppose that            By the choice of  and  , it is clear that 

 
     

 
                 

     

 
      

Solving the left-hand inequality for     , we conclude that      
     

 
      , as promised.

A real number   is said to lie between two numbers  and  if and only if       or   
    .

3.29 Theorem. [Intermediate Value Theorem].
Suppose that    and that          is continuous. If   lies between     and     , then 

there is an         such that          

Proof.

We may suppose that              Consider the set                    (see Figure 

3.3). Since    and        ,  is a nonempty, bounded subset of  . Hence, by the 
Completeness Axiom,        is a finite real number. It remains to prove that         and 

        .

Choose by Theorem 2.11 a sequence     such that      as    . Since        , it 
follows from Theorem 2.17 that          Moreover, by the continuity of  and the definition 

of  , we have                     .

To show that         , suppose to the contrary that         . Then        is a 

continuous function on the interval      whose value at     is positive. Hence, by Lemma 

3.28, we can choose an  and an      such that             . In particular,     and 

       , a contradiction.
We have shown that         and         . In view of our opening assumption,         
    , it follows that   cannot equal  or  . We conclude that         .
Thus, if  is continuous on      and             , then there is an         such that 

        .

If  fails to be continuous at a point  , we say that  is discontinuous at  and call  a point of 
discontinuity of  . How badly can a function behave near a point of discontinuity? The following 
examples can be interpreted as answers to this question. (See also Exercise 9.6.9)

3.30 Example.
Prove that the function

      
   

 
           

          
Is continuous on       and      , discontinuous at 0, and that both      and      exist.

Proof. 
Since       for    , it is clear that        exists and          as    for any   
 . In particular,  is continuous on      . Similarly,         and  is continuous on 
       Finally, since            , the limit of     as    does not exist by Theorem 
3.14. Therefore,  is not continuous at 0.

3.31 Example.
Assuming that     is continuous on  , prove that the function 

         
 

 
          

         
Is continuous on       and      , discontinuous at  , and neither      nor      exists. 
(see Figure 3.1.)

Proof.
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Proof.

The function 
 

 
 is continuous for    by Theorem 3.8. Hence, by Theorem 3.24,          

 

 
  

is continuous on       and      . To prove that      does not exist, let    
 

       
      , and 

observe (see Appendix B) that     
 

  
              Since     but      does not 

converge, it follows from Theorem 3.21 (the Sequential Characterization of Continuity) that 
     does not exist. A similar argument proves that      does not exist.

3.32 Example.
The Dirichlet function is defined on  by 

      
         
         

Prove that every point    is a point of discontinuity of  . (Such functions are called nowhere 
continuous.)
Proof.
By Theorem 1.18 and Exercise 1.3.3 (Density of Rationals and Irrationals), given any    and 

   we can choose     and         such that         for       Since        

and        ,  cannot be continuous at  .

3.33 Example.
Prove that the function

      

 

 
        

 

 
                      

        
Is continuous at every irrational in the interval      but discontinuous at every rational in 
      

Proof.
Let  be a rational in      and suppose that  is continuous at  . If   is a sequence of 

irrationals which converges to  , then           ; that is,       . But       by 

definition. Hence,  is discontinuous at every rational in       

Let  be an irrational in       We must show that           for every sequence         

which satisfies     as    . We may suppose that     . For each    , write    
  

  
  in 

reduced form. Since       , it suffices to show that     as    . Suppose to the contrary 

that there exist integers        such that     
     for    . Since    

      , it 

follows that the set 

      
 

   

   

        

Contains only a finite number of points. Hence, the limit of any sequence in  must belong to  , 
a contradiction since  is such a limit and is irrational.

To see how counterintuitive Example 3.33 is, try to draw a graph of        Strager things can 
happen.

3.34 Remark.
The composition of two functions    can be nowhere continuous, even though  is 
discontinuous only on  and  is discontinuous at only one point.

Proof.
Let  be the function given in Example 3.33 and set

      
         
         

Clearly,

          
         
         

Hence,    is the Dirichlet function, nowhere continuous by Example 3.32.
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Hence,    is the Dirichlet function, nowhere continuous by Example 3.32.

In view of Example 3.33 and Remark 3.34, we must be skeptical of proofs which rely exclusively 
on geometric intuition. And although we shall use geometric intuition to suggest methods of 
proof for many results in subsequent chapters, these suggestions will always be followed by a 
careful rigorous proof which contains no fuzzy reasoning based on pictures or sketches no 
matter how plausible they seem.
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3.35 Definition.
Let  be a nonempty subset of  and      . Then  is said to be uniformly continuous on  
(notation:      is uniformly continuous) if and only if for every    there is a    such 
that 

                                              

Notice that the  in Definition 3.35 depends on  and  , but not on  and  . This issue needs to 
be addressed when we prove that a given function is uniformly continuous on a specific set (e.g., 
by determining  before  is mentioned). 

3.36 Example.
Prove that        is uniformly continuous on the interval       

Proof.

Given    , set   
 

 
 . If          , then                 Therefore, if          and 

       , then 

                                           

The definitions of continuity and uniform continuity are very similar. In fact, the only difference is 
that for a continuous function, the parameter  may depend on  , whereas for a uniformly 
continuous function,  must be chosen independently of  . In particular, every function 
uniformly continuous on  is also continuous on  . The following example shows that the 
converse of this statement is false unless some restriction is made of  .

3.37 Example.
Show that        is not uniformly continuous on  .

Proof.
Suppose to the contrary that  is uniformly continuous on  . Then there is a    such that 
       implies              for all       By the Archimedean Principle, choose   

 so large that     . Set    and     
 

 
 . Then        and 

                         
  

 
         

The contradiction proves that  is not uniformly continuous on  .

3.38 Lemma.

Suppose that    and that      is uniformly continuous. If     is Cauchy, then      

is Cauchy.

Proof.

Let    and choose    such that (9) holds. Since     is Cauchy, choose    such that 

     implies          . Then      implies                .

Notice that      
 

 
 is continuous on      and    

 

 
 is Cauchy but      is not. In particualr, 

 

 
 is continuous but not uniformly continuous on the open interval      . Notice how the graph 

of   
 

 
 corroborates this fact. Indeed, as  gets closer to 0, the value of  gets smaller (compare 

  to   in Figure 3.4) and hence cannot be chosen independently of  .

Thus on an open interval, continuity and uniform continuity are different, even if the interval is 
bounded. The following result shows that this is not the case for closed, bounded intervals. (This 
result is extremely important because uniform continuity is so strong. Indeed, we shall use it 

3.4 Uniform Continuity
2018年11月9日 14:15

   An Introduction to Analysis Page 47    



result is extremely important because uniform continuity is so strong. Indeed, we shall use it 
dozens of times before this book is finished.)

3.39 Theorem.
Suppose that  is a closed, bounded interval. If      is continuous on  , then  is uniformly 
continuous on  .

Proof.
Suppose to the contrary that  is continuous but not uniformly continuous on  . Then there is an 

    and points        such that         
 

 
 and 

                      

By the Bolzano-Weierstrass Theorem and the Comparison Theorem, the sequence     has a 

subsequence, say    
, which converges, as    , to some    . Similarly, the sequence 

    
 
   

has a convergent subsequence, say     
, which converges, as    , to some    . 

Since     
  as    and  is continuous, it follows from (10) that               ; that is 

         . But         
 

 
 for all    so Theorem 2.9 (the Squeeze Theorem) implies   

 . Therefore,          , a contradiction.

3.40 Theorem.
Suppose that    and that          . Then  is uniformly continuous on      if and only if 
 can be continuously extended to      ; that is, if and only if there is a continuous function 
         which satisfies

                   

Proof.
Suppose that  is uniformly continuous on      . Let         converge to  as    . Then 

    is Cauchy; hence, by Lemma 3.38, so is          In particular,

        
   

     

Exists. This value does not change if we use a different sequence to approximate  . Indeed, let 
        be another sequence which converges to  as    . Given    , choose    such 

that (9) holds for        . Since        , choose    so that    implies         

  By (9), then,                for all    . Taking the limit of this inequality as    , we 

obtain

    
   

         
   

        

For all    . It follows from Theorem 1.9 that 

   
   

         
   

      

Thus,     is well defined. A similar argument defines      
Set          for        . Then  is defined on       satisfies 
(11), and is continuous on      by the Sequential Characterization of Limits. Thus,  can be 
"continuously extended" to  as required.
Conversely, suppose that there is a function  continuous on      which satisfies (11). By Theorem 
3.39,  is uniformly continuous on      ; hence,  is uniformly continuous on      . We conclude 
that  is uniformly continuous on      .

Let  be continuous on a bounded, open, nondegenerate interval      . Notice that  is 
continuously extendable to      if and only if the one-sided limits of  exist at  and  . Indeed, 
when they exist, we can always define  at  and  to be the values of these limits. In particular, we 
can prove that  is uniformly continuous without using  's and  's.

3.41 Example.

Prove that      
   

    
    is uniformly continuous on      .

Proof.
It is clear that       as     . Moreover, by L'Hospotal's Rule (see Theorem 4.27),
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Hence  is continuously extendable to      , so by Theorem 3.40,  is uniformly continuous on 
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Chapter 4 Differentiability on  
2018年11月11日 22:33
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4.1 Definition.
A real function  is said to be differentiable at a point    if and only if  is defined on some open 
interval  containing  and 

         
   

           

 
              

Exists. In this case      is called the derivative of  at  .

If  is differentiable at each point in a set  , then   is a function on  . This function is denoted 
several ways:

    
  

  
            

When       , we shall also use the notation 
  

  
  or   for   . Higher-order derivatives are 

defined recursively; that is, if    , then                 
 
   , provided these derivatives 

exist. Higher-order derivatives are also denoted several ways, including   
  , 

   

      ,     , and by 
   

      and     when       . The second derivatives     (respectively,     ) are usually written 

as    (respectively,    ), and when they exist at some point  , we shall say that  is twice 
differentiable at  .
Here are two characterizations of differentiability which we shall use to study derivatives. The 
first one, which characterizes the derivative in terms of the "chord function"

     
         

   
                  

4.2 Theorem. 
A real function  is differentiable at some point    if and only if there exist an open interval  
and a function     such that    ,  is defined on  ,  is continuous at  , and 

                   
Holds for all    , in which case           .
Proof.
Notice once and for all that for          , (2) and (3) are equivalent. Suppose that  is 
differentiable at  . Then  is defined on some open interval  containing  , and the limit in (1)
exists. Define  on  by (2) if    , and by           . Then (3) holds for all    , and  is 
continuous at  by (2) since      exists.
Conversely, if (3) holds, then (2) holds for all    ,    . Taking the limit of (2) as    , bearing 
in mind that  is continuous at  , we conclude that           .

The second characterization of differentiability, in terms of linear approximations [i.e., how well 
           can be approximated by a straight line through the origin] will be used in 
Chapter 11 to define the derivative of a function of several variables.

4.3 Theorem.
A real function  is differentiable at  if and only if there is a function  of the form        
such that 

   
   

                

 
                       

Proof.
Suppose that  is differentiable, and set        . Then by (1),

                

 
                     

           

 
                      

As    .
Conversely, if (4) holds for        and    , then 

       

 
    

          

 

    
          

 
 

4.1 The Derivative
2018年11月11日 22:34
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By (4), the limit of this last expression is  . It follows that 
           

 
           , as    ; that is, that 

     exists and equals  .

4.4 Theorem.
If  is differentiable at  , then  is continuous at  .

Proof.
Suppose that  is differentiable at  . By Theorem 4.2, there is an open interval  and a function 
 , continuous at  , such that                    for all    . Taking the limit of this last 
expression as    , we see that 

   
   

                      

In particular,          as    ; that is,  is continuous at  .
Thus any function which fails to be continuous at  cannot be differentiable at  . The following 
example shows that the converse of Theorem 4.4 is false.

4.5 Example.
Show that         is continuous at 0 but not differentiable there.

Proof.
Since    implies      ,  is continuous at 0. On the other hand, since      when    
and       when    , we have 

   
    

         

 
                    

    

         

 
             

Since a limit exists if and only if its one-sided limits exist and are equal (Theorem 3.14), it 
follows that the limit in (1) does not exist when    and         . Therefore,  is not 
differentiable at  .

4.6 Definition.
Let  be a nondegenerate interval.

A function      is said to be differentiable on  if and only if

  
        

   
   

         

   
          

1.

Exists and is finite for every    .
 is said to be continuously differentiable on  if and only if   

 exists and is continuous on 
 .

2.

4.7 Example.

The function       
 

 
 is differentiable on      and       

      

 
   for all         

Proof.

By the Power Rule (see Exercise 4.2.7),       
      

 
   for all         And by definition,

         
    

 
 
     

 
          

    
  
   

   

Here is notation widely used in conjunction with Definition 4.6. Let  be a nondegenerate 
interval. For each    , define the collection of functions      by 

                                                       

We shall denote the collection of  which belong to      for all    by      . Notice that      

is precisely the collection of real functions which are continuously differentiable on  . When 
dealing with specific intervals, we shall drop the outer set of parentheses; for example, we shall 
write        for          .
By modifying the proof of Theorem 4.4, we can show that if  is differentiable on  , then  is 
continuous on  . Thus,                  for all integers      .
The following example shows that not every function which is differentiable on  belongs to 
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The following example shows that not every function which is differentiable on  belongs to 
     .

4.8 Example.
The function 

      
       

 

 
          

         
Is differentiable on  but not continuously differentiable on any interval which contains the 
origin.
Proof.
By definition,

         
   

     
 

 
                          

 

 
        

 

 
   

For    . Thus  is differentiable on  but            does not exist. In particular,   is not 
continuous on any interval which contains the origin.

4.9 Remark.
        is differentiable on      and on       but not on        

Proof.
Since       when    and        when    , it is clear that  is differentiable on 
            [with        for    and         for    ]. By Example 4.5,  is not 
differentiable at    . However,

      
        

    

   

 
                   

        
    

   

 
       

Therefore,  is differentiable on      and on        
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4.10 Theorem.
Let  and  be real functions and    . If  and  are differentiable at  , then    ,   ,    , 

and [when       ] 
 

 
 are all differentiable at  . In fact,

     
 
                

    
 
           

     
 
                        

 
 

 
   

 

    
                   

     
                     

Proof.
The proofs of these rules are similar. We provide the details only for (7). By adding and 
subtracting         in the numerator of the left side of the following expression, we can write 

                 

   
                       

           

   
                 

           

   
             

This last expression is a product of functions. Since  is continuous (see Theorem 4.4), it follows 
from Definition 4.1 and Theorem 3.8 that

   
   

                 

   
                                       

Formula (5) is called the Sum Rule, (6) is sometimes called the Homogeneous Rule, (7) is called the 
Product Rule, and (8) is called the Quotient Rule.

4.11 Theorem. [Chain Rule].
Let  and  be real functions. If  is differentiable at  and  is differentiable at     , then    is 
differentiable at  with 

     
 
                  

Proof.
By Theorem 4.2, there exist open intervals  and  , and functions      , continuous at  , and 

     , continuous at     , such that                             

                         
And 

                               

Since  is continuous at  , we may assume (by making  smaller if necessary) that       for 
all    .
Fix    . Apply (11) to       and (10) to  to write

                                              

                            
 

Set                 for    . Since  is continuous at  and  is continuous at     , it is 

clear that  is continuous at  . Moreover,

                               

It follows from Theorem 4.2, therefore, that      
 
                  

4.2 Differentiability Theorems
2018年11月13日 21:54
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4.12 Lemma. [Rolle's Theorem].
Suppose that      with    . If  is continuous on        differentiable on      , and if 
         , then        for some         

Proof.
By the Extreme Value Theorem,  has a finite maximum  and a finite minimum  on      . If   
 , then  is constant on      and        for all         
Suppose that    . Since          ,  must assume one of the values  or  at some point 
       . By symmetry, we may suppose that       . [That is, if we can prove the theorem 
when       , then a similar proof establishes the theorem when       .] Since  is the 
maximum of  on      , we have

             
For all  which satisfy           In the case    this implies

         
    

           

 
                 

And in this case    this implies

         
    

           

 
                 

It follows that         

Notice once and for all that the proof of Rolle's Theorem proves a well-known result: The extreme 
values of a differentiable function on an open interval occur at critical points (i.e., at points where   

is zero).

4.13 Remark.
The continuity hypothesis in Rolle's Theorem cannot be relaxed at even one point in       

Proof.
The function

      
              
          

Is continuous on      , differentiable on      , and            , but      is never zero.

4.14 Remark.
The differentiability hypothesis in Rolle's Theorem cannot be relaxed at even one point in       

Proof.
The function         is continuous on        differentiable on             , and       
    , but      is never zero.

We shall use Rolle's Theorem to obtain several useful results. The first is a pair of "Mean Value 
Theorems."

4.15 Theorem.
Suppose that      with    .

[Generalized Mean Value Theorem] If    are continuous on      and differentiable on 
    then there is a      such that 

1.

4.3 The Mean Value Theorem
2018年11月14日 17:12

   An Introduction to Analysis Page 55    



      then there is a        such that 

                                  

[Mean Value Theorem] If  is continuous on      and differentiable on      , then there 
is a        such that 

                     

2.

Proof.

Set                                       Since                        

                , it is clear that  is continuous on      , differentiable on      , and 

          Thus, by Rolle's Theorem,        for some         

1.

Set       and apply part 1). (For a geometric interpretation of this result, see the 
opening paragraph of this section and Figure 4.3.)

2.

The Generalized Mean Value Theorem is also called Cauchy's Mean Value Theorem. It is usually 
essential when comparing derivatives of two functions simultaneously, using higher-order 
derivatives to approximate functions, and studying certain kinds of generalized derivatives (e.g., 
see Taylor's Formula and l'Hospital's Rule in the next section, and Remark 14.32).
The Mean Value Theorem is most often used to extract information about  from   (see, e.g., 
Exercise 4.3.4, 4.3.5, and 4.3.9). Perhaps the best known result of this type is the criterion for 
deciding when a differentiable function increases. To prove this result, we begin with the 
following nonmenclature.

4.16 Definition.
Let  be a nonempty subset of  and       

 is said to be increasing (respectively, strictly increasing) on  if and only if        

and      imply            [respectively,            ].

1.

 is said to be decreasing (respectively, strictly decreasing) on  if and only if        

and      imply            [respectively,            ].

2.

 is said to be monotone (respectively, strictly monotone) on  if and only if  is either 
decreasing or increasing (respectively, either strictly decreasing or strictly increasing) on 
 .

3.

4.17 Theorem.
Suppose that      , with    , that  is continuous on      , and that  is differentiable on 
      

If        [respectively,        ] for all        , then  is strictly increasing 
(respectively, strictly decreasing) on       

1.

If        for all        , then  is constant on       2.
If  is continuous on      and differentiable on      , and if            for all   
     , then    is constant on       

3.

Proof.

Let           By the Mean Value Theorem, there is a        such that       

                   Thus,            when        and            when       

 . This proves part 1).
To prove part 2), notice that if     , then by the proof of part 1),  is both increasing and 
decreasing, and hence constant on       Finally, part 3) follows from part 2) applied to    .

Theorem 4.17i is a great result. It makes checking a differentiable function for monotonicity a 
routine activity. However, there are many nondifferentiable functions which are monotone. For 
example, the greatest integer function,

                        
Is increasing on  but not even continuous, much less differentiable.

How badly can these nondifferentiable, monotone functions behave? The following result shows 
that, just like the greatest integer function, any function which is monotone on an interval 
always has left and right limits (contrast with Examples 3.31 and 3.32). This is a function 
analogue of the Monotone Convergence Theorem.

4.18 Theorem. 
Suppose that  is increasing on     
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Suppose that  is increasing on       
If        , then      exists and            1.
If        , then      exists and            2.

Proof.
By symmetry it suffices to show that      exists and satisfies           for any fixed   
      Set           and        Since  is increasing,     is an upper bound of  . Hence, 

 is a finite real number which satisfies        Given    , choose by the Approximation 

Property an         such that            . Since  is increasing,

                

For all        Therefore,      exists and satisfies              

We have seen (Example 3.32) that a function can be nowhere continuous (i.e., can have 
uncountably many points of discontinuity). How many points of discontinuity can a monotone 
function have?

*4.19 Theorem
If  is monotone on an interval  , then  has at most countably many points of discontinuity on  .

Proof.
Without loss of generality, we may suppose that  is increasing. Since the countable union of at 
most countable sets is at most countable (Theorem 1.42ii), it suffices to show that the set of 
points of discontinuity of  can be written as a countable union of at most countable sets. Since 
 is the union of closed intervals           , we may suppose that  is a closed, bounded 
interval       
Let  represent the set of points of discontinuity of  on      . By Theorem 4.18,       
          for all         Thus,  is discontinuous at such an  if and only if       
       . It follows that 

   
   

 
   

Where for each    ,                         
 

 
   We will complete the proof by 

showing that each   is finite.

Suppose to the contrary that    is infinite for some   . Set                 and observe 

that since  is finite valued on  ,   is a finite real number. On the other hand, since    is 

infinite, then by symmetry we may suppose that there exist        in      such that 

                  for     Since  is monotone, it follows that 

                          

 

   

 
 

  
   

That is,                   for all    . Taking the limit of this last inequality as    , 

we see that      . With this contradiction, the proof of the theorem is complete.

4.20 Example.
Prove that       for all     

Proof.
Let          , and observe that             for all    . It follows from Theorem 
4.17i that     is strictly increasing on       Thus                 for    . In 
particular,       for    .

4.21 Theorem. [Bernoulli's Inequality].
Let  be a positive real number. If      , then            for all         , and if 
   , then if    , then            for all          

Proof.
The proofs of these inequalities are similar. We present the details only for the case      . 
Fix     and let        ,        . Since            , it follows from the Mean Value 
Theorem (applied to    and      ) that 
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For some  between  and    .
Case 1.    . Then    . Since      implies      , it follows that       , hence 
       . Therefore, we have by (12) that 

                                      
As required.
Case 2.       . Then    so       . But since    , it follows that        as before 
and we can repeat (13) to obtain the same conclusion.

*4.22 Example.

Prove that the sequence    
 

 
  

 
is increasing, as    , and its limit  satisfies       

(The limit  turns out to be an irrational number, the natural base                  .) 
Proof.

The sequence    
 

 
  

 
is increasing, since by Bernoulli's Inequality,

   
 

 
   

 
      

    
 

   
       

To prove that this sequence is bounded above, observe by the Binomial Formula that

   
 

 
   

 

   
 

 
  

 

 
   

  

   

 

Now,

 
 

 
  

 

 
   

 

 
              

                      
 

  
   

 

  
   

 

        

For all    . It follows from Exercise 1.4.4c that 

     
 

 
       

 

 
   

 

      
 

     

   

   

   
 

          

For    . Hence, by the Monotone Convergence Theorem, the limit  exists and satisfies   
    

The last result in this section shows that although a differentiable function might not be 
continuously differentiable, its derivative does satisfy an intermediate value theorem. (This 
result is sometimes called Darboux's Theorem.)

*4.23 Theorem. [Intermediate Value Theorem For Derivatives].
Suppose that  is differentiable on      with            . If   is a real number which lies 

between      and      , then there is an         such that          .

Strategy: Let               We must find an         such that                  

  Since local extrema of a differentiable function  occur only where the derivative of  is zero 
(e.g., see the proof of Rolle's Theorem), it suffice to show that  has a local extremum at some 
         

Proof.
Suppose that   lies between      and      . By symmetry, we may suppose that          
      Set              for         and observe that  is differentiable on      . Hence, 

by the Extreme Value Theorem,  has an absolute minimum, say      , on       Now       

          , so              for    sufficiently small. Hence     is NOT the 
absolute minimum of  on      . Similarly,     is not the absolute minimum of  on      . 

Hence, the absolute minimum      must occur on      ; that is,         and          
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4.24 Theorem. [Taylor's Formula].

Let    and let    be extended real numbers with     If           and if       exists 
on      , then for each pair of points           there is a number  between  and   such 
that 

            
        

  
             

 
 

   

 
         

      
              

   
 

Proof.
Without loss of generality, suppose that      Define

     
        

      
                                 

       

  
            

 

   

For each         and observe that the theorem will be proved if we can show that there is a  
between  and   such that

                      

This looks like a job for the Generalized Mean Value Theorem.
To verify that  and  satisfy the hypotheses of the Generalized Mean Value Theorem, notice that 

 

  
   

       

  
              

         

  
               

       

      
               

For        and    . Telescoping, we obtain

       
         

  
              

For         On the other hand, by the Chain Rule

       
      

  
       

For     Thus  and  are differentiable on       , continuous on       and satisfy
     

     
                     

By the Generalized Mean Value Theorem, there is a number         such that 

                                    

Since            and    , it follows that        
            

     that is,       

      
     

     
     We conclude by (15) that (14) holds, as promised.

We shall use this result in Chapter 7 to show that most of the functions you've used in calculus 
classes before are very nearly polynomials themselves. To lay some ground work for these 
results, we introduce some additional notation.

Define     and             , and notice that       
        

  
       We shall call

  
         

        

  
             

 
 

   

The Taylor Polynomial of order  generated by  centered at    Clearly, for each          , 
Taylor's Formula gives us an estimate of how well Taylor polynomials approxiamte  . In fact, 
since Taylor's Formula implies

        
          

         

      
              

   
  

For some  between  and   and the fraction 
 

      
     gets smaller as  gets larger, we see that 

when the derivatives of  are bounded, the higher-order Taylor polynomials approximate  
better than the lower-order ones do. 
Let's look at two specific examples to see how this works out in practice.

4.4 Taylor's Theorem and L'Hospital's Rule
2018年11月22日 6:46
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Let's look at two specific examples to see how this works out in practice.

4.25 Example.
Let        and     

Find the Taylor polynomial      
   

 1.
Prove that if          then

           
 

      
        

2.

Find an  so large that   approximates   on       to four decimal places.3.

Proof.

Since           for all    and         it is clear that          for all    ; 
that is, that 

  
         

  

  
   

 

   

 

1.

Let            Clearly,          and       for all     But if  lies between  

and 0, then          Thus it follows from (17) that            
        

      
       

 

      
     .

2.

To get four-place accuracy, we want                   By part 2., this will hold when 
 

      
             ; that is, when             . According to my calculator, this occurs 

when      , so set    .

3.

4.26 Example.
Let          and    .

Find the Taylor polynomial            
   

 1.

Prove that if          then

                
 

       
         

2.

Find an  so large that      approximates     on       to three decimal places.3.
Proof.

Observe that                                           

                      , right back where we started from. Thus it is clear that 

                  and                     for        . It follows that 

          and                 for    ; that is, that

     
           

          

       
          

 

   

 

1.

Let            Clearly,             and                for all    . Thus it 

follows from (17) that                 
 

       
       

2.

To get three-place accuracy, we want                       By part 2., this will hold 

when 
 

       
             ; that is, when              According to my calculator, this 

occurs when       , so set     

3.

This next result is a widely known technique for evaluating limits of the form 
 

 
 or 

 

 
  . Since it 

involves using information about derivatives to draw conclusions about the functions 
themselves, it should come as no surprise that the proof uses the Meav Value Theorem. (Notice 
that our statement is general enough to include one-sided limits and limits at infinity.)

4.27 Theorem. [L'Hospital's Rule].
Let  be an extended real number and  be an open interval which either contains  or has  as 
an endpoint. Suppose that  and  are differentiable on        and that             for all 
          Suppose further that

     
   
   

        
   
   

    

Is either  or  . If 

     
   
   

     

     
     

Exists as an extended real number, then
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Exists as an extended real number, then

   
   
   

    

    
        

   
   

     

     
      

Proof.
Let     be distinct points with     as    such that either     or     for all   
 . By the Sequential Characterization of Limits and by the characterization of two-sided limits 

in terms of one-sided limits, it suffices to show that 
     

     
      as     

We suppose for simplicity that    . (For the cases     , see Exercise 4.4.10.) Notice once 
and for all, since   is never zero on  , that by Mean Value Theorem the differences          
are never zero for      ,    , provided either      or      . Hence, we can divide by 
these differences at will.
Case 1.
   and    . Extend  and  to      by             . By hypothesis,  and  are 
continuous on      and differentiable on        . Hence by the Generalized Mean Value 
Theorem, there is a   between   and    such that 

          

          
             

      

      
       

Since            , it follows that

     

     
      

          

          
             

      

      
       

Let    . Since   lies between   and  ,   also converges to  as     Hence hypothesis 

and (21) imply 
     

     
      as    .

Case 2.
    and    . We suppose by symmetry that     . For each      , apply the 
Generalized Mean Value Theorem to choose a     between   and   such that (20) holds for   

in place of  and     in place of   . Thus

     

     
      

     

     
       

           

     
              

 

     
                    

        

        
       

     
     

      
       

        

        
        

That is,

     

     
      

     

     
      

     

     
      

        

        
        

        

        
        

Since    , it is clear that 
 

     
      as    , and since     lies between   and   , it is also 

clear that       , as      . Thus (22) and hypothesis should imply that 
     

     
           

 for large  and  . Specifically, let      . Since       as      , choose an   so large 

that     implies  
         

         
           

 

 
 . Since        , choose an     such that  

      

     
      

and the product  
      

     
        

         

         
        are both less than 

 

 
 for all    . It follows from (22) that for 

any    ,

 
     

     
          

     
 

     
          

     
 

     
       

         

         
           

         

         
              

Hence, 
     

     
      as    .

Case 3.
    . We suppose by symmetry that     . Choose    such that        . For each 

     
 

 
  , set        

 

 
  and        

 

 
   Notice that by the Chain Rule,
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Thus, for   
 

 
       , 

     

     
     

     

     
     Since    if and only if   

 

 
    , it follows that  

and  satisfy the hypotheses of Cases 1 or 2 for    and      
 

 
   In particular,

   
   

     

     
         

    

     

     
         

    

    

    
         

   

    

    
     

L'Hospital Rule can be used to compare the relative rates of growth of two functions. For 
example, the next result shows that as    ,   converges to  much faster than   does.

4.28 Example.

Prove that       
  

       

Proof.

Since the limit of 
  

    and 
 

    are of the form 
 

 
  , we apply l'Hospital's Rule twice to verify

   
   

  

  
       

   

  

  
       

   

 

  
      

For each subsequent application of l'Hospital's Rule, it is important to check that the hypotheses 
still hold. For example, 

   
   

                
   

  

       
                 

   

 

      
         

Notice that the middle limit is not of the form 0/0.
L'Hospital Rule can be used to evaluate limits of the form            

4.29 Example.
Find              

Solution.

By writing  as        , we see that the limit in question is of the form 
 

 
  . Hence, by L'Hospital's 

Rule,

   
    

         
    

    

   
        

    

   

              

The next two examples show that L'Hospital's Rule can also be used to evaluate limits of the 
form   and   .

4.30 Example.
Find                    

Solution.
If the limit exists, then by a law of logarithms and the fact that     is continuous, we have 

               
    

 
     Thus it follows from l'Hospital's Rule and the Chain Rule that 

        
    

         

 
              

    

 
    
      

 
         

In particular, the limit exists by l'Hospital's Rule and           .

4.31 Example.

Find                
   

 

Solution.

If the limit    exists, then                          is of the form     Hence, by 

l'Hospital's Rule,
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Therefore, the limit exists by l'Hospital's Rule and        
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4.32 Theorem.
Let  be a nondegenerate interval and suppose that      is 1-1. If  is continuous on  , then 
      is an interval,  is strictly monotone on  , and    is continuous and strictly monotone 
on  .

Proof.
Since  is 1-1 from  onto  , Theorem 1.30 implies that    exists and takes  onto  .
To show that  is an interval, since  contains at least two points, so does  . Let      with   
 . By the definition of an interval, it suffices to prove that every         belongs to  . Since  
takes  onto  , there exist points      such that       and       . Since   lies between 
    and     , we can use the Intermediate Value Theorem to choose an   between  and  

such that         . Since     and  takes  onto  ,         must belong to  , as required.

Suppose that  is not strictly monotone on  . Then there exist points        such that     
 but     does not lie between     and     . Since  is 1-1,          , so by symmetry we 
may suppose that          . Since     does not lie between     and     , it follows that 
either               or               . Hence by the Intermediate Value Theorem, 

there is an         such that either           or           . Since  is 1-1, we conclude 

that either     or     , both contradictions. Therefore,  is strictly monotone on  .
By symmetry, suppose that  is strictly increasing on  . To prove that    is strictly increasing 

on  , suppose to the contrary that there exist        such that      but         

        Then           and           satisfy      and        . Since  is strictly 

increasing on  , it follows that                  , a contradiction. Thus,    is strictly 

increasing on  .
It remains to prove that    is continuous from the left and from the right at each     . We 
will provide the details for continuity from the right. To this end, suppose that    is not 
continuous from the right at some     ; that is, that there exist     such that      ,    
  as    , but that 

                  

For some number   . Since  is an interval and    takes  onto  , it follows that   belongs to  

and there is a     such that            Substituting this into (23), we see that         

               . Since  is strictly increasing, we conclude that         ; that is,   

cannot converge to   , a contradiction. A small argument verifies that    is continuous from 
the left at each     . Thus    is continuous on  .

4.33 Theorem. [Inverse Function Theorem].
Let  be an open interval and      be 1-1 and continuous. If       for some    and if 

     exists and is nonzero, then    is differentiable at  and      
 
    

 

     
    

Proof.
By Theorem 4.32,  is strictly monotone, say strictly increasing on  , and    exists and is both 
continuous and strictly increasing on the range     . Moreover, since           and  is 
open, we can choose      such that          .

Let   be the range of  on      ; that is,            . By Theorem 4.32,   must be an 

interval. Since  is strictly increasing, it follows that                Hence, we can choose 

   so small that        implies       . In particular,         is defined for all 
        
Fix such an  and set           . Observe that                  . Since    is 
continuous,    if and only if    . Therefore, by direct substitution, we conclude that 

   
   

               

 
                      

   

   

         
           

 

     
      

This theorem is usually presented in elementary calculus texts in a form more easily 

4.5 Inverse Function Theorems
2018年11月29日 11:21
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This theorem is usually presented in elementary calculus texts in a form more easily 
remembered:
If       and         , then

  

  
    

 

     
       

Notice that, by using this formula, we do not need to solve explicitly for    to be able to 

compute      
 
 

4.34 Example.

If                     , prove that       exists at    and find a value for 

     
 
   .

Solution.
Observe that       and        for all    . Thus  is strictly increasing on      , and hence 
1-1 there.
Let        ,    , and    . Then       and           . Hence, it follows from the 

Inverse Function Theorem that      
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Chapter 5 Integrability on  
2018年12月15日 22:37
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5.1 Definition.
Let      with    .

A partition of the interval      is set of points               such that 

               

1.

The norm of a partition               is the number

         
     

          

2.

A refinement of a partition               is a partition  of      which satisfies   

 . In this case we say that  is finer than  .

3.

5.2 Example. [The Dyadic Partition].

Prove that for each    ,     
 

                is a partition of the interval      , and   is 

finer than   when    .

Proof.

Fix    . If    
 

    , then                . Thus,   is a partition of      . Let    

and set      . If       , then 
 

     
   

     and         . Thus   is finer than   .

5.3 Definition.

Let      with    , let               be a partition of the interval      , set        

    for           and suppose that          is bounded.

The upper Riemann sum of  over  is the number

                

 

   

 

1.

Where 

                         
           

     

The lower Riemann sum of  over  is the number

                

 

   

 

2.

Where

                         
           

     

(Note: Since we assumed that  is bounded, the numbers      and      exist and are finite.)

5.4 Remark.
If      , then 

              

 

   

            

For all    in  .

Proof.
The proof is by induction on  . The formula holds for    . If it holds for some      , then 

              

 

   

                                       

We shall refer to this algebraic identity by saying the sum telescopes to             In 

particular, if             is a partition of    , the sum    
 
   telescopes to       

5.1 The Riemann Integral
2018年12月15日 22:37
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particular, if               is a partition of      , the sum     
 
   telescopes to       

    
Before we define what it means for a function to be integrable, we make several elementary 
observations concerning upper and lower sums.

5.5 Remark.
If       is constant on      , then 

                    

For all partitions  of      .
Proof.

Since              for all  , the sum       and       telescopes to       

5.6 Remark.

             for all partitions  and all bounded functions  .

Proof.

By definition,            for all  .

The next result shows that as the partitions get finer, the upper and lower Riemann sums get 
nearer each other.

5.7 Remark.
If  is any partition of      and  is a refinement of  , then

                            

Proof.

Let               be a partition of      . Since  is finer than  ,  can be obtained from  in 

a finite number of steps by adding one point at a time. Hence it suffices to prove the inequalities 
above for the special case        for some        . Moreover, by symmetry and Remark 

5.6, we need only show              .

We may suppose that    . Hence, there is a unique index   such that            . By 

definition, it is clear that 

                                              

Where

                                             

                    

By the Monotone Property of Suprema,     and     are both less than or equal to  . Therefore,

                                          

5.8 Remark.
If  and  are any partitions of      , then

              

Proof.
Since    is a refinement of  and  , it follows from Remark 5.7 that 

                               

For any pair of partitions     whether  is a refinement of  or not.

5.9 Definition.
Let      with    . A function          is said to be (Riemann) integrable on      if 
and only if  is bounded on      , and for every    there is a partition  of      such that 

               .

Notice that this definition makes sense whether or not  is nonnegative. The connection 
between nonnegative functions and area was only a convenient vehicle to motivate Definition 

5.9. Also notice that, by Remark 5.6,                              for all partitions  . 

Hence,                is equivalent to                  .

This section provides a good illustration of how mathematics works. The connection between 
area and integration leads directly to Definition 5.9. This definition between area and 
integration leads directly to Definition 5.9. This definition, however, is not easy to apply in 
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integration leads directly to Definition 5.9. This definition, however, is not easy to apply in 
concrete situations. Thus, we search for conditions which imply integrability and are easy to 
apply. In view of Figure 5.2, it seems reasonable that a function is integrable if its graph does not 
jump around too much (so that it can be covered by thinner and thinner rectangles). Since the 
graph of a continuous function does not jump at all, we are led to the following simple criterion 
that is sufficient (but not necessary) for integrability.

5.10 Theorem. 
Suppose that      with    . If  is continuous on the interval      , then  is integrable on 
     .

Proof.
Let    . Since  is uniformly continuous on      , choose    such that 

                                
 

   
      

Let               be any partition of      which satisfies        . Fix an index  and 

notice, by the Extreme Value Theorem, that there are points   and   in          such that 

                               

Since        , we also have           Hence by (1),             
 

   
   . In particular,

                            

 

   

    
 

   
         

 

   

   

(The last step comes from telescoping.)

5.11 Example.
The Dirichlet function

      
       
       

Is not Riemann integrable on      .

Proof.
Clearly,  is bounded on      . By Theorem 1.18 and Exercise 1.3.3 (Density of Rationals and 
Irrationals), the supremum of  over any nondegenerate interval is 1, and the infimum of  over 

any nondegenerate interval is 0. Therefore,                    for any partition  of 

the interval      ; that is,  is not integrable on      .

5.12 Example.
The function

     

 
 

         
 

 
  

   
 

 
      

Is integrable on       

Proof.
Let    . Choose              such that         The set 

             

Is a partition of      . Since                                           

      it is easy to see that                        Therefore,  is integrable on      .

We have defined integrability, but not the value of the integral. We remedy this situation by 
using the Riemann sums       and       to define upper and lower integrals.

5.13 Definition.
Let      with    , and          be bounded.

The upper integral of  on      is the number

   
 

 

                                   

1.
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The lower integral of  on      is the number

        
 

 

                                         

2.

If the upper and lower integrals of  on      are equal, we define the integral of  on 
     to be the common value

     
 

 

           
 

 

           
 

 

   

3.

This defines integration over nondegenerate intervals. Motivated by the interpretation of 
integration as area, we define the integral of any bounded function  on      to be zero; that is,

     
 

 

     

Although a bounded function might not be integrable (see Example 5.11 above), the following 
result shows that the upper and lower integrals of a bounded function always exist.

5.14 Remark. 
If          is bounded, then its upper and lower integrals exist and are finite, and satisfy

        
 

 

           
 

 

   

Proof.

By Remark 5.8,              for all partitions  and  of       Taking the supremum of 

this inequality over all partitions  of      , we have 

        
 

 

            

That is, the lower integral exists and is finite. Taking the infimum of this last inequality over all 
partitions  of      , we conclude that the upper integral is also finite and greater than or equal 
to the lower integral.
5.15 Theorem.
Let      with    , and          be bounded. Then  is integrable on      if and only if 

        
 

 

           
 

 

   

Proof.
Suppose that  is integrable. Let    and choose a partition  of      such that 

                

By definition,         
 

 
         and the opposite inequality holds for the lower integral 

and the lower sum        Therefore, it follows from Remark 5.14 and (3) that 

         
 

 

           
 

 

             
 

 

           
 

 

  

                 

Since it is valid for all    , (2) holds as promised.
Conversely, suppose that (2) holds. Let    and choose, by the Approximation Property, 
partitions   and   of      such that 

                
 

 

   
 

 
  

And

                
 

 

   
 

 
   

Set        . Since  is a refinement of both   and   , it follows from Remark 5.7, the 
choices of   and   , and (2) that
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Since the integral has been defined only on intervals      , we have tacitly assumed that    . 
We shall use the convention

     
 

 

         
 

 

  

To extend the integral to the case    . In particular, if     is integrable and nonpositive on 
     , then the area of the region bounded by the curves               , and    is 

given by      
 

 
  .

5.16 Theorem.
If       is constant on      , then

     
 

 

          

Proof.
By Theorem 5.10,  is integrable on      . Hence, it follows from Theorem 5.15 and Remark 5.5 that
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5.17 Definition.
Let          .

A Riemann sum of  with respect to a partition            of      generated by 

samples             is a sum

                   

 

   

 

1.

The Riemann sums of  are said to converge to     as        if and only if given    

there is a partition   of      such that 

                                           

2.

For all choices of             ,           In this case we shall use the notation

        
       

             
       

      

 

   

    

5.18 Theorem.
Let      with    , and suppose that          . Then  is Riemann integrable on      if 
and only if 

        
       

      

 

   

   

Exists, in which case           
 

 
   

Proof.
Suppose that  is integrable on      and that    . By the Approximation Property, there is a 
partition   of      such that 

             
 

 

                          
 

 

     

Let                  . Then (4) holds with  in place of   . But                   

for any choice of             . Hence,

     
 

 

                     

 

   

             
 

 

    

That is,             
 
         

 

 
     We conclude that 

       

 

   

         
 

 

     

For all partitions     and all choices of             ,           

Conversely, suppose that the Riemann sums of  converge to      Let    and choose a 

partition               of      such that 

       

 

   

          
 

 
  

For all choices of             . Since  is bounded on      (see Exercise 5.2.11), use the 

Approximation Property to choose                such that                   

    
 

    
. By (5) and telescoping, we have 

5.2 Riemann Sums
2019年1月11日 9:22
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Therefore,  in integrable on      .

5.19 Theorem. [Linear Property].
If    are integrable on      and    , then    and   are integrable on      are integrable 
on      . In fact, 

            
 

 

        
 

 

        
 

 

  

And 

        
 

 

         
 

 

   

Proof. 

Let    and choose   such that for any partition                  of      and any 

choice of             , we have 

       

 

   

         
 

 

    
 

 
  

And

       

 

   

         
 

 

    
 

 
  

By the Triangle Inequality,

       

 

   

          

 

   

         
 

 

        
 

 

     

For any choice of             . Hence, (6) follows directly from Theorem 5.18.

To prove (7), we may suppose that    . Choose   such that if            is finer than   , 

then 

       

 

   

         
 

 

    
 

   
   

For any choice of              Multiplying this inequality by    , we obtain

        

 

   

          
 

 

       
 

   
     

For any choice of             . We conclude by Theorem 5.18 that (7) holds.

5.20 Theorem.
If  is integrable on      , then  is integrable on each subinterval      of      . Moreover, 

     
 

 

        
 

 

        
 

 

  

For all         
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Proof.
We may suppose that    . Let    and choose a partition  of      such that 

               .

Let         and            . Since   is a partition of      and   is a refinement of  , 
we have by (9) that

                                               

Therefore,  is integrable on      . A similar argument proves that  is integrable on any 
subinterval      of       
To verify (8), suppose that  is any partition of      . Let         ,            , and    
        . Then         and by definition

                              

          
 

 

           
 

 

        
 

 

        
 

 

  

(This last equality follows from the fact that  is integrable on both      and      .) Taking the 
infimum of 

            
 

 

        
 

 

  

Over all partitions  of      , we obtain

     
 

 

           
 

 

        
 

 

        
 

 

   

A similar argument using lower integrals shows that 

     
 

 

        
 

 

        
 

 

   

Using the conventions 

     
 

 

         
 

 

               
 

 

    

It is easy to see that (8) holds whether or not  lies between  and  , provided  is integrable on 
the union of these intervals (see Exercise 5.2.4).

5.21 Theorem. [Comparison Theorem for Integrals].
If    are integrable on      and          for all        , then

     
 

 

        
 

 

  

In particular, if         for        , then

            
 

 

          

Proof.

Let  be a partition of      . By hypothesis,            whence              . It follows 

that 

     
 

 

           
 

 

         

For all partitions  of      . Taking the infimum of this inequality over all partitions  of      , 
we obtain

     
 

 

        
 

 

  

If         , them (by what we just proved and by Theorem 5.16)

         
 

 

        
 

 

     
 

 

          

We shall use the following result nearly every time we need to estimate an integral.

5.22 Theorem. 
If  is (Riemann) integrable on      , then    is integrable on      and
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Proof.

Let               be a partition of      . We claim that 

                           

Holds for           Indeed, let              . If          have the same sign, say both are 

nonnegative, then

                                    

If          have opposite signs, say            , then        and hence,

                                            

Thus in either case,                           Taking the supremum of this last 

inequality for            and then the infimum as            , we see that (10) holds, as 

promised.

Let    and choose a partition  of      such that                . Since (10) implies 

                               , it follows that 

                    

Thus    is integrable on      . Since                    holds for any        , we 

conclude by Theorem 5.21 that

        
 

 

        
 

 

          
 

 

  

5.23 Corollary.
If  and  are (Riemann) integrable on      , then so is    

Proof.
Suppose for a moment that the square of any integrable function is integrable. Then, by hypothesis, 

  ,   , and      
 

are integrable on      . Since 

   
     

 
      

 
                  

It follows from Theorem 5.19 that   is integrable on       

It remains to prove that   is integrable on       Let  be a partition of      . Since     
   

         
 

and     
            

 
, it is clear that

    
       

             
 

          
 

                                    

                     

Where                ; that is,         for all         Multiplying the displayed 

inequality by    and summing over          , we have

                                      

Hence, it follows from Theorem 5.22 that   is integrable on       

5.24 Theorem. [First Mean Value Theorem For Integrals].
Suppose that  and  are integrable on      with       for all        . If 

              and            ,
Then there is a number        such that

         
 

 

         
 

 

   

In particular, if  is continuous on      , then there is an         which satisfies
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Proof. 
Since    on      , Theorem 5.21 implies

      
 

 

            
 

 

         
 

 

   

If      
 

 
    , then          

 

 
    and there is nothing to prove.

Otherwise, set

  
         

 

 
  

     
 

 
  

             

And note that        . If  is continuous, then (by the Intermediate Value Theorem) we can 

choose         such that         

5.25 Example.

Find           
 

 
  if

      
        

         
 

Solution.

By Theorem 5.16,

          
 

 

    
        

         

Hence,          

Notice in Example 5.25 that the integral  of  is continuous even though  itself is not. The 
following result shows that this is a general principle.

5.26 Theorem.

If  is (Riemann) integrable on      , then           
 

 
  exists and is continuous on       

Proof.
By Theorem 5.20,     exists for all        . To prove that  is continuous on      , it suffices to 
show that           for all        and           for all         Fix          

By definition,  is bounded on       Thus, choose    such that         for all         

Let    and set   
 

 
  . If         , then by Theorem 5.22,

                   
 

  

           
 

  

             

Hence,              A similar argument shows that             for all          

5.27 Theorem. [Second Mean Value Theorem For Integrals].
Suppose that    are integrable on      , that  is nonnegative on      , and that    are real 
numbers which satisfy              and               Then there is an        such 
that

         
 

 

         
 

 

         
 

 

   

In particular, if  is also nonnegative on      , then there is an        which satisfies

         
 

 

         
 

 

   

Proof.
The second statement follows from the first since we may use    when    . To prove the 
first statement, set
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For        , and observe by Theorem 5.26 that  is continuous on       Since  is 
nonnegative, we also have                     for all        . Hence, it follows from 
the Comparison Theorem (Theorem 5.21) that 

           
 

 

            
 

 

         
 

 

        

Since  is continuous, we conclude by the Intermediate Value Theorem that there is an        

such that
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5.28 Theorem. [Fundamental Theorem of Calculus].
Let      be nondegenerate and suppose that           

If  is continuous on      and           
 

 
  , then          and 

 

  
        

 

 

             

1.

For each         

If  is differentiable on      and   is integrable on      , then

      
 

 

            

2.

For each         

Proof.

For        , set           
 

 
  . By symmetry, it suffices to show that if        

     for some         , then

   
    

             

 
                      

1.

(see Definition 4.6). Let    and choose a    such that          implies 

              . Fix      . Notice that by Theorem 5.20,

                   
    

  

  

And that by Theorem 5.16,

      
 

 
        

    

  

   

Therefore,

             

 
                       

 

 
               

    

  

   

Since      , it follows from Theorem 5.22 and the choice of  that

 
             

 
                        

 

 
                 

    

  

     

This verifies (11) and the proof of part 1) is complete.

We may suppose that    . Let    . Since   is integrable, choose a partition   

            of      such that

           

 

   

       
 

 

     

2.

For any choice of points              Use the Mean Value Theorem to choose points    

         such that                         It follows by telescoping that

                 
 

 

                     

 

   

       
 

 

      

5.29 Remark.
The hypotheses of the Fundamental Theorem of Calculus cannot be relaxed.

Proof.

Define  on     by1.

5.3 The Fundamental Theorem of Calculus
2019年2月2日 14:48
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Define  on       by

      
         

        

1.

Then  is integrable on       , but           
 

  
        is not differentiable at 

   .

Define  on      by            
 

     when    and        Then  is differentiable 

on      , but

            
 

  
     

 

 
       

 

  
          

2.

Is not even bounded on      , much less integrable on       

By the Fundamental Theorem of Calculus, integration is the inverse of differentiation in the 
following sense. If   is integrable, then 

      
 

 

        
 

 
           

In particular,

   
 

 

   
    

   
      

 

 

For each    , and for each    , provided     and      is a subset of      (see 
Exercises 4.2.3 and 5.3.7). This result is sometimes called the Power Rule.

5.30 Examples.

Find          

 
   1.

Find          
 

 
  

 
   2.

Solution.

Since                  , we have by the Power Rule that

        
 

 

              
 

 
   

1.

Since              , we have by the Fundamental Theorem of Calculus that

         

 
   

 

          
 

 
   

 
 

 
     

2.

5.31 Theorem. [Integration by Parts].
Suppose that    are differentiable on      with      integrable on      . Then

          
 

 

                               
 

 

   

This rule is sometimes abbreviated as 

  
 

 

        
 

 

   

Where it is understood that if       for some differentiable function  , then the Leibnizian 
differential   is defined by            
Integration by parts can be used to reduce the exponent  on an expression of the form     
       when  is integrable.

5.32 Example.

Find       
 

 
  

 
   

Solution.
Let    and          . Then      and        . Hence, by parts,

  

 
   

 

              
 

 
   

         

 
   

 

        
 

 
   

   

5.33 Example.
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5.33 Example.

Find      
 

 
   

Solution.

Let       and       Then    
  

 
  and    . Hence, by parts

     
 

 

         
 

 
    

 

 

         

5.34 Theorem. [Change of Variables].
Let  be continuously differentiable on a closed, nondegenerate interval      . If 

                       
And if

 is integrable on              

Then         is integrable on      , and

     
 

 

                   
 

 

   

Strategy: By the Mean Value Theorem, hypothesis (12) implies that  is 1-1 on      . Hence by 
Theorem 4.32,  is strictly monotone on      and             is a closed interval.

Suppose that  is strictly increasing on      ; that is,        and                  . By 

Theorem 4.32,    is increasing on       Thus if               is a partition of      and 

          , then               is a partition of      . A Riemann sum of the right side of

(14) looks like

                                  

 

   

    

On the other hand, a typical term of a Riemann sum of the left side of (14) looks like

                              

Since   , hence  , is continuous, we can use the Intermediate Value Theorem to choose    

         such that         , and the Mean Value Theorem to choose             such that 

                        It follows that a Riemann sum the left side of (14) looks like

                          

 

   

    

The only difference between this last sum and (15) is that   has been replaced by   . Since   and   

both belong to the interval          and   is continuous, making this replacement should not 

change  much if the norm of  is small enough. Hence, a Riemann sum of the left side of (14) is 
approximately equal to a Riemann sum of the right side of (14). This means the integrals in (14)
should be equal. Here are the details.

Case 1. Suppose that  is strictly increasing on      . Let    . Since  is bounded, choose   
     such that         for all        . Since   is uniformly continuous on      , choose 

   such that

                
 

       
          

That is,

                          
 

      
        

For all            with           

Next, use the Inverse Function Theorem to verify that    is continuously differentiable on      . 

Thus there is an    such that if          and        , then                   

Finally, since  is integrable on                  , choose a partition               of      

such that        and
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Holds for any choice of              

Set           and observe (by the choice of  ) that             is a partition of      

which satisfies          

Let             , set         , and apply the Mean Value Theorem to choose             

such that                         Then, by the choices of       and   , we have    

         and

                                                      

Hence, it follows from (16) and (17) that

                   

 

   

      
    

    

                                 

 

   

 

                       

 

   

      
    

    

   

  
 

      
            

 

   

 
 

 
     

We obtained this estimate for the fixed partition   of      , but the same steps also verify this 

estimate for any partition finer than   . We conclude by Theorem 5.18 that           is 

integrable on      and (14) Holds.

Case 2. 
 is strictly decreasing on      . Repeat the proof in case 1. The only changes are    

                   and          Thus the Mean Value Theorem implies that

                                          

Estimating the Riemann sums as above, we again conclude that 

     
 

 

                   
 

 

   

The proof of Theorem 5.34 also establishes the following more familiar form of the Change of 
Variables Formula: If  is   on      , if   is never zero on      , and if  is integrable on 
      , then

     
    

    

                
 

 

   

The difficult part of Theorem 5.34 was verifying that         is integrable on      when  is 
integrable on       If we assume that  is continuous, the proof is a lot easier.

5.35 Theorem. [Change of Variables for Continuous Integrands].
If  is continuously differentiable on a closed, nondegenerate interval      and  is continuous 
on          then 

     
    

    

                
 

 

  

Proof.
Set

                  
 

 

                

          
 

    

               

And observe that if  is the infimum of      then        
 

 
     

  

 
   It 
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And observe that if  is the infimum of          then           
 

 
        

    

 
   It 

follows from the Fundamental Theorem of Calculus that                   and       

     Hence, by the Chain Rule,
 

  
                   

For all        . It follows from Theorem 4.17ii that             is constant on      . 

Evaluation at    shows that this constant is zero. Thus             for all        , in 

particular, when    .

These Change of Variables Formulas can be remembered as a substitution if we use the 
Leibnizian differentials introduced above:       implies            

5.36 Example.
Suppose that  is an unknown function which is nonnegative and continuous on       If data are 

collected that can be interpreted as      
 

 
     find an upper bound for the integral

          
 

 

   

Solution.
Let       . Then         . Unlike textbook-style problems, we do not have a   term 
already in  . However, since        implies    , and since  is nonnegative, it is clear that 

        
         

 
         Therefore,
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5.37 Remark.
If  is integrable on      , then

     
 

 

      
    

    
    

     
 

 

    

Proof.
By Theorem 5.26,

          
 

 

  

Is continuous on       Thus

     
 

 

                 
    

    
    

            

     
    

    
    

     
 

 

    

This leads to the following generalization of the Riemann integral.

5.38 Definition.
Let      be a nonempty, open (possibly unbounded) interval and          .

 is said to be locally integrable on      if and only if  is integrable on each closed 
subinterval      of       

1.

 is said to be improperly integrable on      if and only if  is locally integrable on      
and 

     
 

 

      
    

    
    

     
 

 

   

2.

Exists and is finite. This limit is called the improper (Riemann) integral of  over       

5.39 Remark. 
The order of the limits in (18) does not matter. In particular, if the limit in (18) exists, then

     
 

 

      
    

    
    

     
 

 

    

Proof.
Let         be fixed. By Theorem 5.20 and 3.8,

   
    

    
    

     
 

 

        
    

      
  

 

      
    

     
 

  

   

     
    

     
  

 

      
    

     
 

  

  

     
    

    
    

     
 

 

    

Thus we shall use the notation

   
    
    

     
 

 

  

To represent the limit in (18). If the integral is not improper at one of the endpoints - for 
example, if  is Riemann integrable on closed subintervals of      - we shall say that  is 
improperly integrable on      and simplify the notation even further by writing

  
 

 

      
    

  
 

 

   

5.4 Improper Riemann Integration
2019年2月3日 15:35
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The following example shows that an improperly integrable function need not be bounded.

5.40 Example.

Show that      
 

       is improperly integrable on      .

Solution.
By definition,

 
 

        
 

 

      
    

 
 

        
 

 

      
    

             

5.41 Example.

Show that      
 

    is improperly integrable on      .

Solution.
By definition,

 
 

     
 

 

      
   

 
 

     
 

 

      
   

   
 

 
      

5.42 Theorem.
If    are improperly integrable on      and      , then      is improperly integrable on 
     and

              
 

 

         
 

 

         
 

 

   

Proof.
By Theorem 5.19 (the Linear Property for Riemann Integrals), 

              
 

 

         
 

 

         
 

 

  

For all         Taking the limit as     and     finishes the proof.

5.43 Theorem. [Comparison Theorem for Improper Integrals].
Suppose that    are locally integrable on      . If            for        , and  is 
improperly integrable on      , then  is improperly integrable on      and 

     
 

 

        
 

 

   

Proof.

Fix        . Let           
 

 
  and           

 

 
  for        . By the Comparison 

Theorem for Integrals,          . Since    , the function  is increasing on      ; hence 
     exists (see Theorem 4.18). Thus, by definition,  is improperly integrable on      and 

     
 

 

                    
 

 

   

A similar argument works for the case     .

5.44 Example.

Prove that      
    

          is improperly integrable on       

Proof.
Since  is continuous on      ,  is locally integrable there as well. Since  is nonnegative on 

     , it is clear that         
    

            
   

 
 
   

   
 

       on      . Since this last function is improperly 

integrable on      by Example 5.40, it follows from the Comparison Test that     is 
improperly integrable on    .
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improperly integrable on      .

5.45 Example.

Prove that      
    

   
        is improperly integrable on      .

Proof.
Since  is continuous on      ,  is integrable on      for any        . By Exercise 4.4.6, 

there is a constant    such that        
    

   
         

 
 
   

 
 
   

   
 

    for    . Since this last function 

is improperly integrable on      by Example 5.41, it follows from the Comparison Theorem 
that     is improperly integrable on      .

5.46 Remark. 

If  is bounded and locally integrable on      and    is improperly integrable on      , then 

    is improperly integrable on      .

Proof.

Let                   . Then                     for all        . Hence, by Theorem 

5.43,     is improperly integrable on       

5.47 Definition.
Let      be a nonempty, open interval and          .

 is said to be absolutely integrable on      if and only if  is locally integrable and    is 

improperly integrable on       

1.

 is said to be conditionally integrable on      if and only if  is improperly integrable but 
not absolutely integrable on      .

2.

5.48 Theorem.
If  is absolutely integrable on      , then  is improperly integrable on      and 

      
 

 

           
 

 

   

Proof.

Since                      , we have by Theorem 5.43 that      is improperly 

integrable on      . Hence, by Theorem 5.42, so is              . Moreover,

      
 

 

           
 

 

  

For every         We finish the proof by taking the limit of this last inequality as     
and     .

The converse of Theorem 5.48, however, is false.

5.49 Example.

Prove that the function 
    

 
   is conditionally integrable on      .

Proof.
Integrating by parts, we have

 
    

 
    

 

 

     
    

 
      

 

 

  
    

       
 

 

  

         
    

 
       

    

       
 

 

  

Since 
 

    is absolutely integrable on      , it follows from Remark 5.46 that 
    

      is absolutely 

integrable on    . Therefore, 
    

 
is improperly integrable on    and
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integrable on      . Therefore, 
    

 
   is improperly integrable on      and

 
    

 
    

 

 

           
    

 
     

 

 

   

To show that 
    

 
   is not absolutely integrable on      , notice that

 
      

 
      

  

 

      
      

 
      

  

      

  

 

   

   
 

  
          

  

      

  

 

   

   
 

  
   

 

   

 
 

 
   

 

 
  

 

   

For each    . Since

 
 

 
  

 

   

   
 

 
  

   

 

  

 

   

  
 

 
  

   

 

                  

As    , it follows from the Squeeze Theorem that

   
   

 
      

 
      

  

 

     

Thus, 
    

 
   is not absolutely integrable on      .
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Place Holder

*5.5 Functions of Bounded Variation
2019年2月6日 17:47
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Place Holder

*5.6 Convex Functions
2019年2月6日 17:48
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Chapter 6 Infinite Series of Real Numbers
2019年2月6日 17:48
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6.1 Definition.
Let      

 
   be an infinite series with terms   .

For each    , the partial sum of  of order n is defined by

      

 

   

 

1.

 is said to converge if and only if its sequence of partial sums     converges to some   

 as    ; that is, if and only if for every    there is an    such that    implies 

        . In this case we shall write 

   

 

   

  

2.

And call  the sum, or value, of the series    
 
    

 is said to diverge if and only if its sequence of partial sums     does not converge as    . 

When   diverges to   as    , we shall also write

   

 

   

   

3.

6.2 Example.

Prove that      
      

Proof.

By induction, we can show that the partial sums     
 

     
   satisfy         for    . Thus 

    as     

6.3 Example.

Prove that        
   diverges.

Proof.
The partial sums           

   satisfy

    
                 

                 
The   does not converge as    .

6.4 Example. [The Harmonic Series].

Prove that the sequence 
 

 
 converges but the series  

 

 
  

   diverges to    

Proof.

The sequence 
 

 
 converges to zero (by Example 2.2i). On the other hand, by the Comparison 

Theorem for Integrals,

    
 

 
  

 

   

   
 

 
  

   

 

  

 

   

  
 

 
  

   

 

            

We conclude that     as    .

This example shows that the terms of a divergent series may converge. In particular, a series 
does not converge just because its terms converge. On the other hand, the following result 
shows that a series cannot converge if its terms do not converge to zero.

6.5 Theorem. [Divergence Test].

6.1 Introduction
2019年2月6日 17:49
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6.5 Theorem. [Divergence Test].

Let     
   

be a sequence of real numbers. If   does not converge to zero, then the series 

   
 
   diverges.

Proof.
Suppose to the contrary that    

 
   converges to some    . By definition, the sequence of 

partial sums       
 
   converges to  as    . Therefore,                 as 

   , a contradiction.

6.6 Theorem. [Telescopic Series].

If     is a convergent real sequence, then 

          

 

   

       
   

   

Proof.
By telescoping, we have

             

 

   

         

Hence,               as    .

6.7 Theorem. [Geometric Series].
Suppose that    , that           and that   is interpreted to be  . Then the series 
    

   converges if and only if      , in which case

   

 

   

 
  

   
      

In particular,

   

 

   

 
 

   
             

Proof.
If      , then     

   diverges by the Divergence Test. If      , then set        
   and 

observe by telescoping that
                         

                                
Hence, 

   
 

   
      

    

   
     

For all    . Since       as    for all      (see Example 2.20), we conclude that    
 

   
   as     

For general  , we may suppose that      and    . Hence,

   

 

   

                

     

   

 

Hence, it follows from Definition 6.1 and what we've already proved that

   

 

   

    
   

   

 

   

    
   

       

     

   

 
  

   
      

6.8 Theorem. [The Cauchy Criterion].

Let     be a real sequence. Then the infinite series    
 
   converges if and only if for every 

   there is an    such that

                   

 

   

    

   An Introduction to Analysis Page 91    



Proof.
Let   represent the sequence of partial sums of    

 
   and set     . By Cauchy's Theorem 

(Theorem 2.29),   converges if and only if given    there is an    such that      

imply            . Since 

           

 

   

For all integers      , the proof is complete.

6.9 Corollary. 

Let     be a real sequence. Then the infinite series    
 
   converges if and only if given    

there is an    such that 

                    

 

   

    

6.10 Theorem.

Let     and     be real sequences. If    
 
   and    

 
   are convergent series, then 

        

 

   

    

 

   

    

 

   

And 

      

 

   

     

 

   

For any    .

Proof.
Both identities are corollaries of Theorem 2.12; we provide the details only for the first identity.
Let   represent the partial sums of    

 
   and   represent the partial sums of    

 
   . Since 

real addition is commutative, we have

        

 

   

            

Taking the limit of this identity as    , we conclude by Theorem 2.12 that
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6.11 Theorem.
Suppose that     for large  . Then    

 
   converges if and only if its sequence of partial 

sums     is bounded; that is, if and only if there exists a finite number    such that

    

 

   

                

Proof.
Set       

 
   for    . If    

 
   converges, then   converges as    . Since every 

convergent sequence is bounded (Theorem 2.8),    
 
   has bounded partial sums.

Conversely, suppose that       for    . Recall from Section 2.1 that     for large  

means that there is an    . Recall from Section 2.1 that     for large  means that there is 
an    such that     for    . It follows that   is an increasing sequence when    . 
Hence by the Monotone Convergence Theorem (Theorem 2.19),   converges.

6.12 Theorem. [Integral Test].
Suppose that          is positive and decreasing on      . Then       

   converges if 
and only if  is improperly integrable on      ; that is, if and only if 

     
 

 

     

Proof.

Let          
   and         

 

 
  for    . Since  is decreasing,  is locally integrable 

on      (see Exercise 5.1.8) and                 for all            Hence, by the 
Comparison Theorem for Integrals,

            
   

 

       

For    . Summing over          , we obtain

             

 

   

      
 

 

           

   

   

        

For all    . In particular,

          

 

   

      
 

 

                 

By (3) it is clear that     is bounded if and only if     is. Since       implies that both   and 

  are increasing sequences, it follows from the Monotone Convergence Theorem that   

converges if and only if   converges, as     

6.13 Corollary. [p-Series Test].
The series 

 
 

     

 

   

Converges if and only if    .

Proof.
If    or    , the series diverges. If    and    , set         and observe that 
              for all        . Hence,  is nonnegative and decreasing on      . Since

 
  

     
 

 

    
   

    

   
      

 

 

    
   

      

   
        

Has a finite limit if and only if      , it follows from the Integral Test that (4) converges if 

6.2 Series with Nonnegative Terms
2019年2月13日 21:35
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Has a finite limit if and only if      , it follows from the Integral Test that (4) converges if 
and only    .

6.14 Theorem. [Comparison Test].
Suppose that        for large  .

If    
 
     , then    

 
      1.

If    
 
     , then    

 
      2.

Proof.
By hypothesis, choose    so large that        for    . Set       

 
   and    

   
 
       . Then              for all    . Since  is fixed, it follows that   is 

bounded when   is, and   is unbounded when   is. Apply Theorem 6.11 and the proof of the 
theorem is complete.

6.15 Example.
Determine whether the series 

 
  

    
       

    

 
    

    
 

 

   

 

Converges or diverges.

Solution.
The  th term of this series can be written by using three factors:

 

 
  

  

   
       

    

 
    

    
 

 

The factor 
  

   
   is dominated by 3. Since        

   
for large  , the factor  

    

 
    
    

 
satisfies

 
    

 
    

    
 

    
   

 
   

   
 

 
 

  
      

For large  . Therefore, the terms of (5) are dominated by 
 

 
 
   

  . Since  
 

 
 
   

   
   converges by the  -

Series Test, it follows from the Comparison Test that (5) converges.

6.16 Theorem. [Limit Comparison Test].

Suppose that     , that     for large  , and that         
  

  
  exists as an extended real 

number.
If       then    

 
   converges if and only if    

 
   converges.1.

If    and    
 
   converges, then    

 
   converges.2.

If    and    
 
   diverges, then    

 
   diverges.3.

Proof.
If  is finite and nonzero, then there is an    such that 

 

 
        

  

 
     

1.

For    . Hence, part 1 follows immediately from the Comparison Test and Theorem 
6.10. Similar arguments establish parts 2. and 3. - see Exercise 6.2.6.

6.17 Example.

Let     as    . Prove that          
   converges if and only if       

   converges.

Proof.
By L'Hospital's Rule,

   
   

       

    
          

    

    

 
       

Hence, by the Limit Comparison Test,          
   converges if and only if       

   converges.
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6.18 Definition.
Let      

 
   

6.3 Absolute Convergence
2019年2月17日 1:55
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